首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine if the primary circulating metabolite of PGF2alpha, 13,14-dihydro-15-keto-PGF2alpha (PGFM), is biologically active and would induce luteolysis in nonpregnant mares. On Day 9 after ovulation, mares (n = 7/group) were randomly assigned to receive: 1) saline control, 2) 10 mg PGF2alpha or 3) 10 mg PGFM in 5 mL 0.9% sterile saline i.m. On Days 0 through 16, blood was collected for progesterone analysis. In addition, blood was collected immediately prior to treatment, hourly for 6 h, and then at 12 and 24 h after treatment for progesterone and PGFM analysis; PGFM was measured to verify that equivalent amounts of hormone were administered to PGF2alpha- and PGFM-treated mares. Mares were considered to have undergone luteolysis if progesterone decreased to < or = 1.0 ng/mL within 24 h following treatment. Luteolysis was induced in 0/7 control, 7/7 PGF2alpha-treated, and 0/7 PGFM-treated mares. There was no difference (P>0.1) in the occurrence of luteolysis in control and PGFM-treated mares. More (P<0.001) PGF2alpha-treated mares underwent luteolysis than control or PGFM-treated mares. There was no difference (P>0.1) in progesterone concentrations between control and PGFM-treated mares on Days 10 through 16. Progesterone concentrations were lower (P<0.01) on Days 10 through 14 in PGF2alpha-treated compared with control and PGFM-treated mares. There was no difference (P>0.05) in PGFM concentrations between PGF2alpha- and PGFM-treated mares; PGFM concentrations in both groups were higher (P<0.001) than in control mares. These results do not support the hypothesis that PGFM is biologically active in the mare, since there was no difference in corpora luteal function between PGFM-treated and control mares.  相似文献   

2.
A prostaglandin F analogue caused luteolysis in normal cycling non-lactating mares, and lactating mares (treated after the foal estrus). Effective doses ranged from 1.0 to 4.0mg given as a single subcutaneous injection 8–10 days after ovulation. A dose of 0.5mg was ineffective, hence the dose-response relationship was steep, indicative of a quantal type of response. Mares usually returned to estrus within 2–4 days and ovulated by 7 days after treatment. Mares bred naturally or by artificial insemination at the induced estrus and ovulation were fertile. The compound was without side-effects, and hence should be of value in manipulating the estrous cycle of the mare.  相似文献   

3.
A prostaglandin F analogue was studied in anestrous mares: a dose-response study; a study in mares presumed pregnant; and a field evaluation of effective doses in breeding establishments. A dose of 2.0mg given by single subcutaneous injection to mares with initial plasma progesterone levels greater than 1.0ng/ml, caused luteolysis on the basis of decline in plasma progesterone concentrations. Follicle maturation leading to ovulation, accompanied by estrus, was observed, and fertility at mating either by natural service or artificial insemination was satisfactory. A dose of 1.0mg was generally effective for luteolysis, but pregnancy rates were lower than after 2.0mg. A proportion of mares which had less than 1.0mg of plasma progesterone at the time of injection ovulated and became pregnant.  相似文献   

4.
Two experiments were conducted to test the efficacy of altrenogest treatment in mares. The response to 15-d altrenogest treatment (Experiment 1) was characterized in 20 mares that were given 22 mg daily of altrenogest in oil (n = 10) or in gel (n = 10) from Day 10 to 25 after ovulation. In 17 mares, luteolysis occurred during altrenogest treatment (Day 17.7 +/- 0.5), while 2 mares retained their corpus luteum (CL), and 1 mare had a diestrous ovulation on Day 16, resulting in a prolonged luteal phase. Ten of the 17 mares in which the CL had spontaneously regressed returned to estrus after the end of treatment, and ovulated 5.7 +/- 0.8 d after the end of altrenogest treatment. Two of these 17 mares ovulated 2 and 3 d after the end of altrenogest treatment but ovulation was not accompanied by estrous behavior, and 5 mares ovulated during altrenogest treatment resulting in an interovulatory interval of 22.4 +/- 1.1 d (range: 20 to 25d). Five mares which ovulated during altrenogest treatment and 2 mares which ovulated during silent estrus after the end of altrenogest treatment failed to regress the CL around 14 d post ovulation, and had a prolonged luteal phase. In Experiment 2, the effect of altrenogest administered from luteolysis to ovulation on duration of the subsequent luteal period was analyzed. In 6 mares altrenogest was begun on Day 14 post ovulation and continued until the hCG-induced ovulation. The interval from ovulation during altrenogest treatment to spontaneous luteolysis was 45.6 +/- 2.4 d (range: 40 to 54d) in altrenogest-treated mares and was significantly longer than in 10 untreated control mares (14.5 +/- 0.3 d, range: 13 to 16d). The results suggest that the oil and gel altrenogest preparations are equally effective in modulating estrous behavior and time to estrus and ovulation. Altrenogest treatment started late in diestrus appears to result in a high incidence of ovulation during treatment and when luteolysis and ovulation occur during treatment; the subsequent luteal phase is frequently prolonged due to failure of regression of the CL.  相似文献   

5.
Daily injections of 150 units oxytocin administered to 6 mares on Days 4, 5, 6, 7 and 8 after ovulation (Day 0 = ovulation) failed to induced luteolysis as indicated by the maintenance of normal plasma progestagen concentrations and the occurrence of normal ovulatory intervals. Three additional mares were given oestrogen injections 24 h before an injection of oxytocin on Day 7 after ovulation, but this treatment also failed to induce luteolysis since plasma progestagen concentrations were maintained in all three mares. Two mares exhibited normal ovulatory intervals, while the third developed a corpus luteum which persisted for 46 days.  相似文献   

6.
The present study was designed to characterize and compare the physiology and ultrasonographic morphology of the corpus luteum (CL) during regression and resurgence following a single dose of native prostaglandin F2alpha (PGF) given 3 days after ovulation, with a more conventional treatment given 10 days after ovulation. On the day of pre-treatment ovulation (Day 0), horse mares were randomly assigned to receive PGF (Lutalyse; 10 mg/mare, i.m.) on Day 3 (17 mares) or Day 10 (17 mares). Beginning on either Days 3 or 10, follicle and CL data and blood samples were collected daily until post-treatment ovulation. Functional and structural regression of the CL in response to PGF treatment were similar in both the Day 3 and 10 groups, as indicated by an abrupt decrease in circulating concentrations of progesterone, decrease in luteal gland diameter and increase in luteal tissue echogenicity. As a result, the mean +/- S.E.M. interovulatory interval was shorter (P < 0.0001) in the Day 3 group (13.2 +/- 0.9 days) than in the Day 10 group (19.2 +/- 0.7 days). Within the Day 3 group, functional resurgence of the CL was detected in 75% of the mares (12 of 16) beginning 3 days after PGF treatment, as indicated by transient major (6 mares) and minor (6 mares) increases (P < 0.05 and < 0.1, respectively) in progesterone. Correspondingly, mean length of the interovulatory interval was longer (P < 0.03) in mares with major resurgence (15.8 +/- 1.6 days) than in mares with minor (11.2 +/- 1.2 days) and no resurgences (13.5 +/- 0.3 days) in progesterone. Structural resurgence of the CL in the Day 3 group and functional and structural resurgence in the Day 10 group were not detected. In conclusion, PGF treatment 3 days after ovulation resulted in structural and functional regression of the CL and hastened the interval to the next ovulation, despite post-treatment resurgences in progesterone.  相似文献   

7.
Uterine biopsy in the mare on day 4 post-ovulation causes an acute inflammatory reaction which results in premature luteolysis. In this study, seven mares (4 to 6 years of age) were used in a switchback experimental design to test the hypothesis that in the mare parenterally administered PBZ will block luteolysis induced by uterine biopsy on day 4 post-ovulation. All mares were allowed two normal estrous cycles (range 18 to 24 days). On the first day of estrus of the third estrous cycle each mare was intravenously given 2 grams PBZ (treatment) or 10 ml 0.9% saline (control) daily until signs of estrus were exhibited. The day of ovulation (day 0) was determined by rectal palpation and subsequently verified by peripheral plasma progesterone concentrations. On day 4 following ovulation all mares were subjected to uterine biopsy, and subsequent estrus detection was performed daily using an andro-genized gelding. A total of 19 estrous cycles (ten for PBZ treatment and nine for controls) were evaluated. Mean number of days (+/-SE) from uterine biopsy to induced estrus was 5.00+/-0.16 for control cycles and was significantly different (P<0.025) when compared with 9.20+/-0.34 days for treatment cycles. Results of this study suggest that PBZ can block luteolysis in the mare induced by uterine biopsy on day 4 post-ovulation, possibly as a result of accumulating PBZ in acutely inflamed uterine tissue and inhibiting prostaglandin synthesis.  相似文献   

8.
Practical estrus synchronization schemes are needed for mares. The Ovsynch synchronization protocol for cattle involves the administration of gonadotropin-releasing hormone (GnRH) to induce ovulation or luteinization of dominant follicles during the luteal phase and prostaglandin 7 days later to cause regression of any luteal tissue and development of a preovulatory follicle. An Ovsynch-type synchronization program potentially could be developed for horses if luteinization or ovulation of diestrous follicles occurred in response to GnRH treatment. The objective of this study was to determine if administration of the GnRH agonist, deslorelin acetate, on Day 8 or 12 postovulation would induce luteinization or ovulation of diestrous follicles in the mare. The model used was cycling mares maintained in an artificial luteal phase by administration of a synthetic progestin following prostaglandin-induced luteal regression. On the day of ovulation, 21 light horse mares were randomly assigned to one of three groups: (1) no GnRH, altrenogest from Days 5 to 15 postovulation with prostaglandin on Day 15; (2) GnRH on Day 8, altrenogest from Days 5 to 15 with prostaglandin given on Day 6 to induce luteolysis of the primary corpus luteum, an implant containing 2.1mg of deslorelin acetate inserted on Day 8 and removed on Day 10, with a second prostaglandin treatment on Day 15; (3) GnRH on Day 12, altrenogest from Days 9 to 19, prostaglandin on Day 10, a deslorelin acetate implant injected on Day 12 (subsequently removed on Day 14), and a second dose of prostaglandin administered on Day 19. Follicular development was monitored every other day from Day 5 until a 30-mm sized follicle was observed, and then daily to detection of ovulation. Serum progesterone concentrations were determined daily for 12 consecutive days. Progesterone concentrations in Group 1 remained elevated until approximately Day 12 postovulation. Prostaglandin administration on Day 15 resulted in complete luteolysis in all seven mares. In Group 2, progesterone concentrations in six of seven mares declined to baseline after prostaglandin treatment. No increase in serum progesterone was noted in any of the six mares that were given GnRH on Day 8, including three mares that had diestrous follicles > or =30mm in diameter at the time of treatment. Similarly, progesterone concentrations in six of seven mares in Group 3 declined to baseline after prostaglandin and there was no increase in progesterone after administration of GnRH on Day 12. No ultrasound evidence of luteinization or ovulation of diestrous follicles were noted after GnRH administration in any mares of Group 2 or 3. In conclusion, administration of the GnRH agonist deslorelin acetate to mares failed to induce luteinization or ovulation of diestrous follicles. Consequently, the Ovsynch program (as used in cattle) has little efficacy for synchronization of estrus in mares.  相似文献   

9.
Progesterone and estradiol 17-beta in poly (DL-lactide) microspheres were used to control estrus and ovulation in mares after luteolysis was induced by prostaglandin F(2)infinity. Mares were given a single intramuscular injection of biodegradable poly (DL-lactide) microspheres, 1 day following prostaglandin treatment, containing no hormones (control), 0.625 g progesterone and 50 mg estradiol (low dose), 1.25 g progesterone and 100 mg estradiol (medium dose), or 1.875 g progesterone and 150 mg estradiol (high dose; n=15 mares per group). Mares treated with the low dose had significantly longer intervals (P<0.05) to estrus and ovulation than the control mares; however, low dose mares had shorter intervals (P<0.05) to estrus than high dose mares and shorter intervals to ovulation than medium and high dose mares. Regression analysis indicated that the medium dose was sufficient for maximizing interval to ovulation while the high dose maximized interval to estrus. All groups of mares exhibited similar (P>0.05) post-treatment estrus lengths. A clinical response scoring system based on synchrony of both estrus and ovulation within a treatment group was also used to measure the effectiveness of treatments on control of estrus and ovulation. Clinical response scores did not differ (P>0.05) among treatment groups. Mares were randomly assigned for insemination at the beginning of the first post-treatment estrus. Rates for embryo recovery performed by uterine lavage 7 days post-ovulation did not differ (P>0.05) among groups. Concentrations of serum progesterone increased in mares receiving progesterone and estradiol microspheres. At 10 to 14 days post-injection of microspheres, progesterone concentrations were higher (P<0.05) and remained above 1 ng/ml in the mares receiving the high dose. Progesterone concentrations were also higher (P<0.05) on Days -3 to -1 (Day 0 = day of post-treatment ovulation) in mares receiving the high dose when compared to control mares. Gonadotropin concentrations were suppressed (P<0.05) in the medium and high dose groups.  相似文献   

10.
《Theriogenology》2015,83(9):1241-1245
A single dose of PGF2α does not consistently induce luteolysis in the equine CL until at least 5 days after ovulation, leading to the erroneous assumption that the early CL is refractory to the luteolytic effects of PGF2α. We hypothesized that serial administration of PGF2α in early diestrus would induce a return to estrus similar to mares treated with a single injection in mid-diestrus, and fertility of the induced estrus would not differ. The objectives of the study were to evaluate the effects of the 2 approaches as reflected by: (1) concentrations of plasma progesterone; (2) interovulatory and treatment-to-ovulation intervals; (3) the proportion of mares pregnant after artificial insemination. The study consisted of a balanced crossover design in which 10 reproductively normal Quarter Horse Mares were exposed to 2 treatments on 2 consecutive reproductive cycles. At detected ovulation (Day 0), mares were randomly allotted to 1 of 2 treatment groups: I, mid-diestrus treatment, administration of a single 10-mg dose of dinoprost tromethamine (PGF2α) im on Day 10; II, early diestrus treatment, administration of 10-mg PGF2α im twice daily on Days 0, 1, and 2 and once daily on Days 3 and 4. Mares in estrus and with a follicle 35 mm or greater in diameter were artificially inseminated with at least 2 billion motile sperm from a fertile stallion. Pregnancy was defined as detection of a growing embryonic vesicle on 2 consecutive examinations approximately 14 days after ovulation. Serial plasma samples were collected throughout the study period, and concentration of plasma progesterone was determined by RIA. A mixed-model ANOVA for repeated measures was used to analyze hormonal data. Interovulatory and treatment-to-ovulation intervals were compared by a paired t test and fertility by a McNemar chi-square analysis. All mares in group I underwent luteolysis after PGF2α administration denoted by mean (±SD) concentration of plasma progesterone of 0.25 ± 0.21 ng/mL detected 2 days after treatment. In group II, mean concentration of plasma progesterone remained below 1.0 ng/mL during treatment and until the onset of the next estrus. The mean interovulatory interval in group I was 18.5 ± 2.0 days compared with 13.1 ± 3.7 days in group II (P < 0.01). Treatment-to-ovulation intervals were 8.5 ± 2.0 days and 13.1 ± 3.7 days for groups I and II, respectively (P < 0.05). In both groups, 9 of 10 mares were pregnant (P = 1.0). Serial PGF2α administration beginning at ovulation consistently prevented luteal function in 10 of 10 mares in the present study without adversely affecting pregnancy rate of post-treatment cycles.  相似文献   

11.
Control of the equine estrous cycle was studied by suppressing gonadotropin secretion by administration of a GnRH antagonist to cyclic pony mares. Four mares received vehicle (control cycle) or a GnRH antagonist, Antarelix (100 microg/kg) on Day 8 of diestrus, and blood samples were collected at 15-min intervals from 0 to 16 h, 24 to 36 h, and daily until the next ovulation. Ovarian activity was monitored by transrectal ultrasonography, and measurement of plasma concentrations of progesterone and estradiol. Antagonist treatment eliminated large diestrous pulses of LH. Progesterone concentrations had fallen significantly in all mares by the day after treatment and, in three of the four mares, remained low until luteolysis. However timing of luteolysis (ie., progesterone concentrations <1 ng/mL) was not affected by antagonist treatment. The preovulatory surges of estradiol and LH were significantly delayed in the treatment cycle, as was the appearance of a preovulatory follicle >30 mm. Cycle length was significantly longer during the treatment than the control cycle. These results show that treatment of diestrous mares with a GnRH antagonist attenuated progesterone secretion, indicating a role for LH in control of CL function in the mare, and delayed ovulation presumably because of lack of gonadotropic support.  相似文献   

12.
Recent evidence indicates that, in mares, as in the domestic ruminants, oxytocin and its endometrial receptor play important roles in stimulating the pulsatile releases of prostaglandin F2 alpha from the endometrium that effect luteolysis. In the present experiment, continuous administration of oxytocin by subcutaneous minipump to five mares during days 8-20 after ovulation abolished luteolysis in four of them, while all four of the control mares infused similarly with saline underwent luteolysis at the expected time. When oxytocin administration began on day 10, instead of on day 8, after ovulation luteolysis occurred rapidly in two of the five treated mares, indicating that the development of oxytocin responsiveness begins on or about day 10 of dioestrus in cyclic mares.  相似文献   

13.
Seasonally anovulatory mares were injected, i.m., twice daily with a GnRH analogue (GnRH-A), and hCG was given when the largest follicle reached 35 mm in diameter. In Exp. 1, treatment was initiated on 23 December when the largest follicle per mare was less than or equal to 17 mm. An ovulatory response (ovulation within 21 days) occurred in 17 of 30 (57%) GnRH-A-treated mares on a mean of 15.8 days. The shortest interval to ovulation in control mares (N = 10) was 57 days. The diameter of the largest follicle first increased significantly 6 days after start of treatment. In Exp. 2, treatment was begun on 15 January and mares were categorized according to the largest follicle at start of treatment. The proportion of mares ovulating within 21 days increased significantly according to initial diameter of largest follicle (less than or equal to 15 mm, 9/25 mares ovulated; 15-19 mm, 13/21; 20-24 mm, 20/24; greater than 25 mm, 3/3). The multiple ovulation rate was greater (P less than 0.01) for treated mares (27/86 mares had multiple ovulations) than for control mares (2/35). Treated mares in which the largest follicle at start of treatment was greater than or equal to 25 mm had a higher (P less than 0.01) multiple ovulation rate (9/14) than did mares in which the largest follicle was less than 25 mm (18/72). The pregnancy rate for single ovulators was not different between control mares (26/30 pregnant mares) and treated mares (43/54).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Equine pituitary extract (EPE) has been reported to induce heightened follicular development in mares, but the response is inconsistent and lower than results obtained in ruminants undergoing standard superovulatory protocols. Three separate experiments were conducted to improve the ovarian response to EPE by evaluating: (1) effect of increasing the frequency or dose of EPE treatment; (2) use of a potent gonadotropin-releasing hormone agonist (GnRH-a) prior to EPE stimulation; (3) administration of EPE twice daily in successively decreasing doses. In the first experiment, 50 mares were randomly assigned to one of four treatment groups. Mares received (1) 25 mg EPE once daily; (2) 50 mg EPE once daily; (3) 12.5 mg EPE twice daily; or (4) 25 mg EPE twice daily. All mares began EPE treatment 5 days after detection of ovulation and received a single dose of cloprostenol sodium 7 days postovulation. EPE was discontinued once half of a cohort of follicles reached a diameter of >35 mm and hCG was administered. Mares receiving 50 mg of EPE once daily developed a greater number (P = 0.008) of preovulatory follicles than the remaining groups of EPE-treated mares, and more (P = 0.06) ovulations were detected for mares receiving 25 mg EPE twice daily compared to those receiving either 25 mg EPE once daily and 12.5 mg EPE twice daily. Embryo recovery per mare was greater (P = 0.05) in the mares that received 12.5 mg EPE twice daily than those that received 25 mg EPE once daily. In Experiment 2, 20 randomly selected mares received either 25 mg EPE twice daily beginning 5 days after a spontaneous ovulation, or two doses of a GnRH-a agonist upon detection of a follicle >35 mm and 25 mg EPE twice daily beginning 5 days after ovulation. Twenty-four hours after administration of hCG, oocytes were recovered by transvaginal aspiration from all follicles >35 mm. No differences were observed between groups in the numbers of preovulatory follicles generated (P = 0.54) and oocytes recovered (P = 0.40) per mare. In Experiment 3, 18 mares were randomly assigned to one of two treatment groups. Then, 6-11 days after ovulation, mares were administered a dose of PGF2, and concomitantly began twice-daily treatments with EPE given in successively declining doses, or a dose of PGF2alpha, but no EPE treatment. Mares administered EPE developed a higher (P = 0.0004) number of follicles > or = 35 mm, experienced more (P = 0.02) ovulations, and yielded a greater (P = 0.0006) number of embryos than untreated mares. In summary, doubling the dose of EPE generated a greater ovarian response, while increasing the frequency of treatment, but not necessarily the dose, improved embryo collection. Additionally, pretreatment with a GnRH-a prior to ovarian stimulation did not enhance the response to EPE or oocyte recovery rates.  相似文献   

15.
Cyclic mares were assigned to 1 of 3 treatments (n=15 per group): Group 1 received equine pituitary extract (EPE; 25 mg, i.m.) on Day 5 after ovulation; Group 2 received EPE on Day 12 after ovulation; while Group 3 received 3.3 mg of GnRH analogue (buserelin implant) on the day of ovulation and 25 mg, i.m. EPE on Day 12. Mares in each group were given 10 mg PGF(2)alpha on the first and second day of EPE treatment. The EPE treatment was continued daily until the first spontaneous ovulation, at which time 3,300 IU of human chorionic gonadotropin (hCG) were given to induce further ovulations. Mares in estrus with a >/=35 mm follicle were inseminated every other day with pooled semen from 2 stallions. Embryo recovery was attempted 7 days after the last ovulation. Follicular changes and embryo recovery during 15 estrous cycles prior to treatment were used as control data. During treatment, the number of follicles >/=25 mm was higher (P<0.05) for Day 5 than for Day 12 or control mares, but the number for Day-5 mares was similar (P>0.05) to that of mares treated with buserelin implants (Group 3). Initiation of EPE treatment on Day 5 resulted in a greater (P<0.05) number of ovulation (2.9) than on Day 12 (1.1) or in the control mares (1.3) but not in the buserelin-treated mares (1.8). The number of embryos recovered from mares in the Day 5 (1.2), Day 12 (1.0), buserelin (0.9) and control (0.9) groups was similar (P>0.05). The conclusions were 1) EPE initiated in early diestrus increased follicular development and ovulation and 2) treatment with GnRH analogue marginally improved response to EPE treatment.  相似文献   

16.
Thirty-six mares which foaled over a 10-day period were given 1 to 10 daily intramuscular injections of a combination of 150 mg. progesterone and 10 mg. estradiol 17β. The first injection was given within 18 hours after parturition. Because individual mares foaled on different dates during the 10 day period, commencement of treatment varied, but treatment for all mares ceased on the same day. Teasing and breeding began seven days after the final treatment. The mares were teased daily for 10 days and artifically inseminated every second day until ovulation occurred. The mean interval from the end of treatment to beginning of estrus was 9.4 days (range 7 to 14) and 33 of 26 mares (94.7%) ovulated 10 to 16 days after the final treatment. Both estrus and ovulation were effectively synchronized, resulting in a first estrus pregnancy rate of 80.6% (29 of 36).  相似文献   

17.
A combined progesterone-estradiol-17beta treatment was given in two experiments conducted to examine its effectiveness in controlling ovulation time in cycling mares. In the first experiment, the combined steroid (150 mg progesterone, 10 mg estradiol-17beta daily for 10 days) alone or combined with prostaglandin on the first and last days of steroid treatment resulted in ovulation in 15 of 16 mares 9-13 days after last injection, 13 of them on days 10-12. A CL present prior to treatment in one mare that received no prostaglandin persisted through and for 14 days after treatment. In the second experiment the combined steroid treatment started on the first or second day of estrus blocked ovulation in only 5 of 13 mares. Thus prostaglandin is necessary at least at the end of treatment. In both experiments a total of 20 mares with no luteal function at the end of steroid treatment ovulated on days 9-13 after last injection, 18 of these on days 10-12. These results indicate that the combined steroid-prostaglandin treatment can result in ovulations in a very restricted interval with apparently a normal distribution.  相似文献   

18.
The effects of two GnRH antagonists were tested in order to delay and/or synchronise ovulation in mares. Five mares received Antarelix (0.01 mg.kg(-1)), 5 mares received Cetrorelix (the same dose), 5 mares (control mares) received the vehicle intravenously, twice daily, for 8 days from the day the largest follicle reached 22 mm following prostaglandin administration. Ovulation was postponed in all mares injected with Antarelix (19.4 +/- 1.2 days after the beginning of the treatment) and in 2/5 mares injected with Cetrorelix (20 +/- 1 days) vs. 6.2 +/- 0.4 days in control mares. During the treatment, LH concentrations were strongly depressed in Antarelix and in Cetrorelix mares (1.6 +/- 0.1 and 3.8 +/- 0.5 ng.mL(-1) respectively vs. 21 +/- 2.5 ng.mL(-1) in control mares). In the 3 Cetrorelix mares which ovulated during the treatment. 2 initiated their LH surge at this moment. FSH concentrations were not affected in Antarelix or in Cetrorelix mares during the treatment (11.4 +/- 1.3 and 7.9 +/- 0.8 ng.mL(-1) respectively vs. 10.5 +/- 0.8 ng.mL(-1) in control mares). In conclusion, Antarelix seems more efficient than Cetrorelix for postponing ovulation in mares. The role of LH in antral follicular development before the preovulatory stage is confirmed.  相似文献   

19.
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles > or = 35 mm were detected in mares treated with EPE twice daily (6.1 +/- 3.1) than in mares treated once a daily (2.0 +/- 0.6). In a second experiment, the embryo recovery rates of mares given the two EPE protocols used in Experiment 1 were compared. The number of ovulations per mare was higher (P < 0.05) for mares treated twice-daily (7.1 +/- 5.1, range 3 to 18) than for mares treated once daily (2.4 +/- 1.8, range 1 to 6). The number of embryos produced per mare was higher (P < 0.05) in mares in Group 2 (3.5) than in Group 1 (1.6). Although it is not clear whether the increased ovulation rate is due specifically to dose or frequency, twice-daily administration of a high dose of EPE significantly improved follicular development, ovulation and embryo recovery over the standard treatment of once-daily injection.  相似文献   

20.
Three experiments were conducted to: (1) compare the effect of three oestradiol formulations on gonadotrophin release in ovariectomised cows; (2) compare the effects of either oestradiol-17beta (E-17beta) or oestradiol benzoate (EB), given at two doses, on the synchrony of ovarian follicular wave emergence in CIDR-treated beef cattle; and (3) determine the timing of ovulation of the dominant follicle of a synchronised follicular wave following administration of E-17beta or EB 24h after progesterone withdrawal. In Experiment 1, ovariectomised cows (n = 16) received a once-used CIDR on Day 0 (beginning of the experiment) and were allocated randomly to receive 5mg of E-17beta, EB or oestradiol valerate (EV) plus 100mg progesterone i.m. The CIDR inserts were removed on Day 7. There were effects of time, and a treatment-by-time interaction (P < 0.0001) for plasma concentrations of both oestradiol and FSH. Plasma oestradiol concentrations peaked 12h after treatment, with highest (P < 0.01) peak concentrations in cows given E-17beta; estradiol concentrations subsequently returned to baseline by 36 h in E-17beta-treated cows and by 96 h in EB- and EV-treated cows. Plasma FSH concentrations decreased by 12h after oestradiol treatment in all groups (P < 0.0001), reached a nadir at 24h, and increased by 60 h in all groups; plasma FSH reached higher (P < 0.02) concentrations in E-17beta-treated than in EB- or EV-treated cows. In Experiment 2, non-lactating Hereford cows (n = 29) received a new CIDR on Day 0 (beginning of the experiment), and were assigned randomly to receive 1 or 5mg of E-17beta or EB i.m. on Day 1. On Day 8, CIDR were removed and PGF was given. Transrectal ultrasonography was done once daily from 2 days before CIDR insertion to 2 days after CIDR removal, and then twice-daily to ovulation. Although there was no difference among groups in the interval from oestradiol treatment to follicular wave emergence (4.2 +/- 0.3 days; P = 0.5), 5mg of E-17beta resulted in the least variable interval to wave emergence (P < 0.005), compared with the other treatment groups which were not different (P = 0.1). For the interval from CIDR removal to ovulation, there were no differences among groups for either means (P = 0.5) or variances (P = 0.1). In Experiment 3, beef heifers (n = 32) received a once-used CIDR on Day 0 (beginning of the experiment) plus 100mg progesterone i.m. and were assigned randomly to receive 5mg E-17beta or 1mg EB i.m. On Day 7, CIDR were removed and all heifers received PGF. On Day 8 (24h after CIDR removal), each group was subdivided randomly to receive 1mg of either E-17beta or EB i.m. There was no effect of oestradiol formulation on interval from treatment to follicular wave emergence (4.1 +/- 0.2 days; P = 0.7) or on the median interval (76.6h; P = 0.7) or range (72-120 h; P = 0.08) from CIDR removal to ovulation. In summary, oestradiol treatments suppressed FSH in ovariectomised cows, with the duration of suppression dependent on the oestradiol formulation. Both E-17beta and EB effectively synchronised ovarian follicular wave emergence and ovulation in CIDR-treated cattle, and the interval from CIDR removal to ovulation did not differ in heifers given either E-17beta or EB 24h after CIDR removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号