首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Amino acid starvation of Escherichia coli relA mutants may be used as a method for efficient plasmid DNA amplification. Here we demonstrate DNA degradation which occurs at elevated temperatures (42–43°C) after plasmid amplification in amino acid-starved bacteria. These results may explain the previously described low efficiency of plasmid DNA amplification at elevated temperatures.  相似文献   

2.
Abstract We have proposed that guanosine tetraphosphate produced in Escherichia coli cells subjected to an isoleucine limitation inhibits pBR322 DNA replication [1]. In E. coli relA which cannot synthesize guanosine tetraphosphate (ppGpp) upon amino acid limitation pBR322 DNA is amplified after arginine starvation. The yield of plasmid DNA amplified either by chloramphenicol (Cm) or by arginine limitation is compared. The plasmid yield per cell is equal in amino acid-starved cells and in cells treated with Cm. To increase the plasmid content per ml of cell suspension the growth medium was supplemented with increasing amounts of nutrients. Plasmid DNA can be isolated in large quantities by this procedure. This simple method can be used for the enrichment of pBR325 DNA which cannot be amplified by Cm treatment. Our results indicate that E. coli relA strains might be suitable hosts for the amplification of pBR322 and related plasmids in E. coli .  相似文献   

3.
The stringent response causes inhibition of replication of plasmid pBR322 in amino acid-starved Escherichia coli cells whereas in relaxed mutants the replication of this plasmid proceeds for several hours. On the basis of density shift experiments and pulse-labelling experiments we showed that most of the pBR322 molecules begin replication during the relaxed response and the rate of plasmid DNA synthesis in unstarved and isoleucine-starved relA ] bacteria is similar. We found that the Rom function plays a key role in the stringent control of plasmid pBR322 replication, as insertional inactivation of the rom gene causes amplification of pBR322rom in both relA and relA + strains during amino acid starvation. Moreover, pUC19, which is a pBR322-derived plasmid lacking the rom gene, behaves like pBR322rom , whereas introduction of the rom gene into the pUC19 replicon drives it into the pBR322 mode of replication in amino acid-starved bacteria. A model for the regulation of pBR322 plasmid DNA replication by Rom protein in amino acid-starved Escherichia coli strains is proposed.  相似文献   

4.
Recombinant lambda phages were isolated that resulted from recombination between the lambda genome and plasmid pBR322 in Escherichia coli, even though these deoxyribonucleic acids (DNAs) did not share extensive regions of homology. The characterization of these recombinant DNAs by heteroduplex analysis and restriction endonucleases is described. All but one of the recombinants appeared to have resulted from reciprocal recombination between a site on lambda DNA and a site on the plasmid. In general, there were two classes of recombinants. One class appeared to have resulted from recombination at the phage attachment site that probably resulted from lambda integration into secondary attachment sites on the plasmid. Seven different secondary attachment sites on pBR322 were found. The other class resulted from plasmid integration at other sites that were widely scattered on the lambda genome. For this second class of recombinants, more than one site on the plasmid could recombine with lambda DNA. Thus, the recombination did not appear to be site specific with respect to lambda or the plasmid. Possible mechanisms for generating these recombinants are discussed.  相似文献   

5.
We found that lambda plasmid replication, as measured by the increase in plasmid content per bacterial mass, proceeds for hours in an amino acid-starved, relaxed mutant of Escherichia coli K-12, whereas is inhibited in its wild-type stringent partner. Replication of lambda plasmid in amino acid-starved, relaxed cells reveals absolute lambda O dependence and is not inhibited by chloramphenicol at 200 micrograms/ml. The replication also occurs in wild-type cells treated with chloramphenicol. We conclude that lambda plasmid replication is under stringent control, probably as a result of the action of ppGpp, the signal for the stringent response, on RNA polymerase.  相似文献   

6.
7.
Amino acid-starved cells of Escherichia coli relA +, which contain a large number of glycogen particles, are able to survive in phosphate buffer for a longer time period than their relaxed counterparts. With regard to NH 4 + starvation differences in the survival of both strains were not found. NH 4 + starved cells of E. coli relA are able to synthesize glycogen but amino acid-starved cells of the relA strain are not. We suggest that the synthesis of glycogen triggered by guanosine tetraphosphate during amino acid starvation is responsible for the prolonged viability of the E. coli relA + strain.Abbreviations ppGpp guanosine tetraphosphate  相似文献   

8.
Summary Monomeric pBR322 DNA that had been linearized at its unique SalI site transformed wild-type Escherichia coli with 102 to 103 times less efficiency than CCC plasmid DNA. Dose-response experiments indicated that a single linear plasmid molecule was sufficient to produce a transformant. Transformation with linearized pBR322 DNA was reduced 10 to 40 fold in recA , recBC or recF backgrounds. In contrast, transformation with CCC DNA was unaffected by the rec status of the host. Transformation with linear pBR322 DNA was increased 3-fold in a DNA ligase-overproducing (lop11) mutant and decreased to a similar degree by transient inactivation of ligase in a ligts7 mutant.A proportion (ranging from about 9% in the wild-type to 42% in a recBC, lop11 mutant) of the transformants obtained with SalI-linearized pBR322 monomeric DNA contained deleted plasmids. Deletion rates were generally higher in rec strains. Dephosphorylation of the termini on linear DNA or the creation of blunt-ended pBR322 molecules (by end-filling the SalI 5 protrusions or by cleavage with PvuII) decreased the transformation frequencywhilst increasing the deletion rate.Linear pBR322 dimeric DNA gave transformation frequencies in recA + and recA strains that were reduced only 3 to 7 fold respectively relative to frequencies obtained with dimeric CCC DNA. Furthermore, in contrast to transformation with linear monomeric DNA, deletions were not observed.We propose that the majority of transformants arise, not by simple intracellular reannealing and ligation of the two cohesive SelI-termini of a linear molecule, but by intramolecular recombination. Deleted plasmids could be generated therefore during recyclization caused by recombination between short directly repeated sequences within a pBR322 monomer. We suggest that perfectly recircularized monomeric pBR322 molecules, which are found in the majority of transformants, arise primarily by intramolecular recombinational resolution of head-to-tail linear pBR322 dimers. Such linear oligomeric forms are created during preparation of linearized plasmid DNA by annealing of the SalI cohesive termini and constitute a variable proportion of the total molecules present.  相似文献   

9.
10.
The complete genome of the hamster papovavirus (HaPV) which was isolated from virions found in multiple skin tumors of Syrian hamsters was cloned in Escherichia coli using the plasmid vector pBR322. The cloned viral DNAs were identified by digestion of the recombinant DNAs with various restriction enzymes followed by comparison of their electrophoretic mobilities in agarose gels with that of similarly digested uncloned DNAs. The cloned HaPV DNAs showed the same migration pattern as the corresponding fragments from the restricted uncloned DNAs, indicating that no major insertions or deletions occurred during cloning and plasmid propagation. The electrophoretic data were confirmed by Southern blot hybridization.  相似文献   

11.
12.
The replication pattern of the plasmid pBR322 was examined in the dnaA mutants of Escherichia coli. The rate of pBR322 DNA synthesis is markedly decreased after dnaA cells are shifted to the restrictive temperature of 42 degrees C. However, addition of rifampicin (RIF) to cultures of dnaA strains incubated at 42 degrees C after a lag of 90 min results in a burst of pBR322 synthesis. This RIF-induced pBR322 replication remains dependent on DNA polymerase I activity. Efficient plasmid pBR322 replication is observed at 42 degrees C in the double mutant dnaA46cos bearing an intragenic suppressor of dnaA46. Though replication of pBR322 in dnaA46cos growing at 42 degrees C is initially sensitive to RIF plasmid synthesis is restored after 90 min incubation in the presence of the drug. RIF-induced replication of the plasmid pBR327, lacking the rriB site implicated in RIF-resistant synthesis of the L strand of ColE1-like plasmids (Nomura and Ray 1981; Zipursky and Marians 1981), was observed also in dnaA46 at 42 degrees C.  相似文献   

13.
Populations of a Escherichia coli K 12 strain, containing the vector plasmid p BR 322, were grown in chemostat culture under glucose- and phosphatelimited conditions. Resistance to tetracycline and ampicillin were lost after prolonged cultivation, resulting in the production of apparent plasmid-free populations which were more competitive than the original population. This competitiveness between plasmid-free and plasmid-containing populations was greatest in environments where the nutrient restriction was severe. Also during sequential subcultivation in batch cultures loss of plasmid was observed.  相似文献   

14.
An unusual structural component, supercondensed pBR322 DNA, has been found in plasmid pBR322 DNA samples isolated from a DNA topoisomerase II mutant of Escherichia coli, SD108 (topA+, gyrB225). The supercondensed pBR322 DNA moved faster than supercoiled pBR322 DNA as a homogeneous band in agrose gels when the DNA samples were analysed by electrophoresis. The mobility of the supercondensed DNA was not substantially affected by chloroquine intercalation. The supercondensed pBR322 DNA migrated as a high density "third DNA band" when the samples were subjected to caesium chloride/ethidium bromide gradient equilibrium centrifugation. The unusual pBR322 DNA visualized by electron microscopy was a globoid-shaped particle. These observations suggest that the pBR322 plasmid can assume a tertiary structure other than a supercoiled or relaxed structure. DNA topoisomerases may be involved in the supercondensation of plasmid DNA and chromosomal DNA.  相似文献   

15.
16.
Stability of pBR322 and pBR327 plasmids was studied. Plasmid-containing Escherichia coli strains were grown in liquid growth medium without selection pressure. Plasmid pBR327 was shown to be more stable in E. coli CSH54 cells than pBR322. Essential heterogenity of individual plasmid-containing clones was recognized by the maintenance stability of plasmid DNA. The indicated clones with high stability failed to be cured from pBR327 plasmid by means of acridine orange. High stability of plasmid maintenance and the failure to cure cells containing this plasmid are suggested to correlate with and to be essentially determined by the cell functions.  相似文献   

17.
Plasmid pBR322 prepared from Escherichia coli strains carrying deletion of the DNA topoisomerase I gene (delta topA) with a compensatory mutation of the DNA gyrase gene (gyrA or gyrB) and from their TopA+ transductants was analyzed by agarose gel electrophoresis followed by electron microscopy, and compared with that from isogenic wild-type strains. It was found that about 1% of the plasmid DNA molecules was a knotted species in the topA+ gyr+ strains W3110 and DM4100, while strains DM750 (delta topA gyrA224), DM800 (delta topA gyrB225), SD275 (topA+ gyrA224) and SD108 (topA+ gyrB225) produced six to ten times as much knotted DNA as the topA+ gyr+ controls. The results suggest that the increased production of knotted pBR322 DNA is closely related to mutations of the gyrase genes.  相似文献   

18.
19.
M V Norgard  K Keem  J J Monahan 《Gene》1978,3(4):279-292
The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA.  相似文献   

20.
Wang Z  Le G  Shi Y  Wegrzyn G  Wrobel B 《Plasmid》2002,47(2):69-78
It has been previously observed that various ColE1-like plasmids replicate differentially in Escherichia coli cells during the relaxed response to amino acid starvation. Here we develop a kinetic model to explain these observations based on the possibility of interaction of the 3' CCA-OH sequence with the UGG triplets in loops of RNA I and RNA II encoded by ColE1-like plasmids. According to our model, when the interaction of uncharged CCA with RNA I is possible, the replication of the ColE1-like plasmid is affected by differences in the concentration of various tRNAs in the starved cell, but it is not affected by the tRNA concentration if the hypothetical pairing occurs between the CCA-OH and RNA II. Using the previously determined parameters for the pBR322 plasmid, the concentration of uncharged tRNAs in the amino acid starved relaxed strains and the assumed efficiency of binding of tRNA and RNA I, we show that our model explains the differences in pBR322 copy number in the relaxed strain starved for several amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号