首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kushwaha  S.  Bhowmik  P.C. 《Photosynthetica》2000,37(4):553-558
Isoxaflutole [5-cyclopropyl-4-(2-methylsulphonyl-4-trifluromethylbenzoyl)isoxazole] is a new preemergence herbicide for broad-spectrum weed control in maize. The effect of isoxaflutole on chlorophyll (Chl) and carotenoid (Car) biosynthesis was investigated in cucumber (Cucumis sativus L.) cotyledons. Etiolated tissue was incubated with 5 mM isoxaflutole for 24 h and irradiated (60 mol m-2 s-1). The irradiation for 3 h did not reduce Chl a, Chl b, and Car contents, but after a 28-h irradiation the contents of Chl a and Car decreased by 35 and 15 %, respectively, and the content of Chl b increased by 24 %. Increasing the concentration of isoxaflutole beyond 5 mM resulted in reduction of Chl a (71 %), Chl b (20 %), and Car (31 %) contents. Similarly, increase in irradiance from 60 to 180 mol m-2 s-1 resulted in larger reduction of Chl and Car contents. Exogenously supplied 5-aminolevulinic acid did not reverse the isoxaflutole-inhibited Chl synthesis, whereas an exogenously supplied homogentisic acid lactone reversed the inhibition of pigment synthesis due to isoxaflutole.  相似文献   

2.
Macedo  M. F.  Duarte  P.  Ferreira  J. G.  Alves  M.  Costa  V. 《Hydrobiologia》2000,441(1):155-172
Physical, chemical and biological observations made in late July and August 1997 across the Azores Front (37° N, 32°W to 32° N, 29°W) are presented. The objectives of the study were: (1) to analyse horizontal and vertical profiles of temperature, salinity, density, nutrients and chlorophyll-a (Chl a) of the top 350 m; (2) to identify the main differences in the deep Chl a Maximum (DCM) and hydrographic structure between the water masses that pass north and south of the Azores Front; and (3) to estimate phytoplankton primary production in these water masses. Horizontal and vertical profiles of salinity, temperature, density, nutrients and phytoplankton pigments in the top 350 m were analysed. The Front separates two distinct water types: the 18°C Mode Water (18 MW) of sub-tropical origin, and the 15°C Mode Water (15 MW) of sub-polar origin. Differences in the DCM and hydrographic structure between 18 MW and 15 MW were observed in the contour plots of each section. The average Chl a concentration between 5 and 200 m depth decreased significantly from 15 MW to 18 MW. The same pattern was observed for the Chl a concentration at the DCM depth. A vertical one-dimensional model was used to estimate the phytoplankton primary production in the 15 MW and 18 MW and led to an estimated water column average gross primary productivity (GPP) between 1.08 and 2.71 mg C m–3 d–1 for the 15 MW and about half of these values for the 18 MW. These results indicate that the typical south–north positive slope on DCM depth parallels a latitudinal increase on GPP, suggesting that the location of the Azores Front may have a significant regional impact on GPP.  相似文献   

3.
Diverse measurements of nutrient status indicators were used to test the severity of physiological phosphorus (P) limitation of phytoplankton among lake systems ranging from oligotrophic to eutrophic, based on P and chlorophyll a (Chl a) concentrations. Metabolic assays and particulate nutrient ratios were used to estimate nutrient status at sites located in Lake Erie, Lake Ontario and Lake Huron. Variable fluorescence ratios (F v/F m), relative electron transport rates and their response to irradiance were measured by the pulse-amplitude-modulated fluorometer. Under summer stratified conditions, P deficiency was strongest in the oligotrophic sites and nitrogen (N) status indicators and Chl a variable parameters revealed no severe N deficiency. Nutrient amendment assays showed positive associations with P additions and Chl a fluorescence parameters at P-deficient sites. In the most oligotrophic sites, N additions revealed a modest increase only detected by the Chl a fluorescence parameters. Phytoplankton communities were also associated with nutrient status, where chrysophytes and cryptophytes were important in P-deficient sites and cyanobacteria, phyrrophyta, and diatoms were prevalent in nutrient-rich sites. The results confirmed that Chl a fluorescence parameters can reveal P deficiency and indicate its severity among the range of trophic status in aquatic systems.  相似文献   

4.
The phytoplankton of North Channel in Lake Huron and its productivity was studied at 8 stations distributed across the channel during May to October, 1974. The phytoplankton analysis was conducted using the Utermohl technique. The mean percent biomass at each station indicated Diatomeae (59–77%) and phytoflagellates such as Chrysophyceae (4–21%) and Cryptophyceae (7–19%) as the dominant contributors. Seasonal variations of biomass ranged from 0.2 to 0.35 g·m–3 with a single peak during stratified conditions. Diatomeae dominated throughout the period of investigation followed by Chrysophyceae and Cryptophyceae. Biomass composition by size revealed the dominance of ultraplankton (5–20 m) which contributed 29–68% to the total biomass. Species such as Fragilaria crotonensis, Tabellaria fenestrata, Synedra acus var. radians, Cyclotella comta and C. bodanica made substantial contributions during the unstratified and stratified conditions.Ultraplankton contributed overwhelmingly to the primary productivity as measured by carbon-14 uptake. The contaminant bioassays with single metals, metals in combination and a mixture of metals demonstrated that the ultraplankton's carbon assimilation was inhibited significantly, revealing their sensitivity to contaminants. Phytoplankton ecology of the Channel appears to be affected by tributary inflows, industrial/municipal inputs, and short flushing rates. However, statistical treatment of the ultraplankton biomass showed correlations with temperature and nutrients. Based on phycological and limnological characteristics, the Channel appears to be oligotrophic. The chlorophyll/biomass ratios and Activity Coefficient (P/B) align it with the most oligotrophic Lake Superior in its metabolic efficiency.  相似文献   

5.
Spatial variability of the central Gulf of California (CGC) phytoplankton biomass and photosynthetic parameters in relation to physical forcing was studied. Sampling was carried out in November, and the surface TC range was 20-27.5°C. Strong tidal mixing in the midrift islands regions injects relatively cool, nutrient-rich waters to the euphotic zone. Some of this water is transported via jets and cool filaments throughout the Gulf. In general, chlorophyll a (Chl) of small phytoplankton (<8 m) (up to >2.5 mg m-3) was higher than that of large phytoplankton. Highest values of phytoplankton assimilation numbers (PBm) [3.17 mg C (mg Chla)-1 h-1], and photosynthetic efficiency B) [0.23 mg C (mg Chl a)-1 h-1 (W m-2)-1] were determined for the large phytoplankton cells (>8 m). Our hypothesis that PBm values increase from cooler to warmer waters is not supported by the data. We found a 27-fold spatial difference of Chl, compared with a 10-fold difference of PBm and a 6-fold difference of B. Thus, in our study area, the major source of variability for primary productivity (PP) comes from Chl, and not from PBm and B. Therefore, we propose that it is possible to estimate late-fall PP for the CGC using average photosynthetic parameters. Average values for PBm and B of total phytoplankton were 0.72 mg c (mg Chl a)-1 h-1 and 0.12 mg C (mg Chl a-1 h-1, (W m-2)-1, with standard errors of 0.07 and 0.03, respectively.   相似文献   

6.
Synechococcus PCC 6301 cells grown in the presence of low sublethal levels of (about 2 m) mercury induced alterations in chlorophyll (Chl) a absorption without significant alterations in phycocyanin. Chl a fluorescence emission in Hg2+ -raised cells showed a large (about 18 nm) blue shift in the peak emission. No major spectral changes in phycobilisome (PBsome) emission characteristic were noticed, indicating major structural alterations in Chl-protein complexes by incubation with Hg2+ ions. Low temperature (77 K) emission spectra of cells grown in the presence of Hg2+ showed a loss of the characteristic Chl a emission band at 695 nm (F695), which is known to be linked to photosystem II photochemistry and to originate from the Chl a of core antenna polypeptide CP 47 of photosystem II. The SDS-PAGE polypeptide profile of thylakoids indicates a loss of a polypeptide(s) with a molecular mass between 40 and 60 k Da by Hg2+ incubation of cells. Our results suggest that prolonged incubation of Synechococcus 6301 cells with low concentrations of Hg2+ affects the Chl a spectral properties and the structure of Chl-protein complexes.  相似文献   

7.
The quantitative and qualitative distribution of phytoplankton was investigated along five North–South transects in the eastern Weddell Sea during the transition from late autumn to winter. Relationships with the regional hydrography, progressing sea ice coverage, nutrient distribution and zooplankton are discussed and compared with data from other seasons. To the north of the Antarctic Slope Front (ASF) a remnant temperature minimum layer was found above the primary pycnocline throughout summer. Surface waters had not entirely acquired typical winter characteristics. While temperature was already in the winter range, this was not the case for salinity. Highest biomass of phytoplankton, with the exception of the first transect, was found in the region adjoining the ASF to the north. Absolute chlorophyll a (Chl a) concentrations dropped from 0.35 to 0.19 g l–1 . Nutrient pools exhibited a replenishing tendency. Ammonium concentrations were high (0.75–2 mol l–1), indicating extensive heterotrophic activity. The phytoplankton in the ASF region was dominated by nanoflagellates, particularly Phaeocystis spp.. North of the ASF the abundance of diatoms increased, with Fragilariopsis spp., F. cylindrus and Thalassiosira spp. dominating. Community structure varied both due to hydrographical conditions and the advancing ice edge. The phytoplankton assemblage formed during late autumn were very similar to the ones found in early spring. A POC/PON ratio close to Redfield, decreasing POC concentration and a high phaeophytin/Chl a ratio, as well as a high abundance of mesozooplankton indicated that a strong grazing pressure was exerted on the phytoplankton community. A comparison between primary production (PP) in the water column and the sea ice showed a shift of the major portion of PP into the ice during the period of investigation.  相似文献   

8.
In order to aid the study of photoacclimation, a new programmable deviceis described which provides automatic on-line acquisition of in vivo cellabsorption in phytoplankton cultures. The system was used for a long-termstudy of Rhodomonas salina grown at constant photon flux density ina nitrate-limited continuous culture with different dilution rates. Particulate absorption measured at the red chlorophyll a (Chl a)maximum was not a good proxy of biomass, because of the large variabilityof cellular chlorophyll induced by nitrogen limitation. However, thedevice is well suited to automatic assessment of Chl a andphycoerythrin (PE) concentrations in phytoplankton cultures, if algal cellsize and concentration are measured in parallel to correct the packagingeffect. The effects of nitrogen limitation on Chl a and PE contentsand particle absorbance are discussed.  相似文献   

9.
This study was conducted to analyse vertical dynamics of phytoplankton distribution in Shira Lake during the summer stratification regime. From late June to September phytoplankton in Shira Lake were stratified with the maximum in the lower part of the thermocline, at a depth of 8–12 m, with a chlorophyll concentration up to 23 g and biomass up to 5 mg l–1. Maxima of chlorophyll and biomass of cyanobacteria and green algae were in different layers. From June to September a major part of chlorophyll a was in green algae, while under ice – in cyanobacteria. The variable fluorescence proves high photosynthetic activity of algae in the depth assemblage. Epifluorescent analysis disclosed that additional light-harvesting pigments were better developed in cells from the depth maximum. The maximum of gross primary production calculated from fluorescence corresponded to the depth maximum of phytoplankton. Primary production over a season was 2.7 gO2 m–2. Formation mechanisms of the depth maximum of phytoplankton are discussed in this paper.  相似文献   

10.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

11.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

12.
We analysed data from three Bulgarian reservoirs, with trophic status from meso to eutrophic. Two kinds of relations (non-allometric and allometric) of chlorophyll with phytoplankton density, biovolume and surface area were investigated. The non-allometric relationships compare these phytoplankton variables with chlorophyll-a concentration, while the allometric ones include comparisons of average individual volume (AIV) of phytoplankters with chlorophyll-a content per individual (Chl.N–1), per unit biovolume (Chl.BV–1) and per unit surface area (Chl.SA–1).Maximum values of the rank correlation of the three non-allometric relationships were found in the eutrophic reservoir. The highest allometric correlation coefficients were observed in the mesotrophic reservoir. Two non-allometric relationships, Chl with N and Chl ith BV calculated on unified data from all three reservoirs showed lower significance and a non-linear character. Chl-SA relationship was always statistically significant and varied from linear to slightly non-linear when calculated on weighed values. Two allometric relationships, AIV with Chl.BV–1 and AIV with Chl.N–1 seem to be linear. A third AIV and Chl.SA–1 was described by a polinomial of the second degree, indicating that the smallest and largest phytoplankton individuals have a similar chlorophyll content per unit surface area. At the highest trophy, the Chl.SA–1 seemed lowest.The frequently investigated relationship between chlorophyll-a and biovolume ranged from statistically not significant in the mesotrophic to highly significant in the eutrophic reservoir. This tendency was generalized by obtaining a statistically significant rank correlation between the levels of significance of chlorophyll-biovolume correlations and the corresponding chlorophyll-a concentrations. The non-linear character of the chlorophyll-biovolume relationship over a wide range of trophy was probably caused by changes in surface area-biovolume ratio.Deceased.  相似文献   

13.
The Porphyridium cruentum light harvesting complex (LHC) binds Chl a, zeaxanthin and -carotene and comprises at least 6 polypeptides of a multigene family. We describe the first in vitro reconstitution of a red algal light-harvesting protein (LHCaR1) with Chl a/carotenoid extracts from P. cruentum. The reconstituted pigment complex (rLHCaR1) is spectrally similar to the native LHC I, with an absorption maximum at 670 nm, a 77 K fluorescence emission peak at 677 nm (ex. 440 nm), and similar circular dichroism spectra. Molar ratios of 4.0 zeaxanthin, 0.3 -carotene and 8.2 Chl a per polypeptide for rLHCaR1 are similar to those of the native LHC I complex (3.1 zeaxanthin, 0.5 -carotene, 8.5 Chl a). The binding of 8 Chl a molecules per apoprotein is consistent with 8 putative Chl-binding sites in the predicted transmembrane helices of LHCaR1. Two of the putative Chl a binding sites (helix 2) in LHCaR1 were assigned to Chl b in Chl a/b-binding (CAB) LHC II [Kühlbrandt et al. (1994) Nature 367: 614–21]. This suggests either that discrimination for binding of Chl a or Chl b is not very specific at these sites or that specificity of binding sites evolved separately in CAB proteins. LHCaR1 can be reconstituted with varying ratios of carotenoids, consistent with our previous observation that the carotenoid to Chl ratio is substantially higher in P. cruentum grown under high irradiance. Also notable is that zeaxanthin does not act as an accessory light-harvesting pigment, even though it is highly likely that it occupies the position assigned to lutein in the CAB LHCs.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
The seasonal development and decline of phytoplankton was investigated in the eastern Weddell Sea during summer and fall 1991. During the first half of the study (15 Jan–13 Feb) in an area off Vestkapp, favourable irradiance/mixing regimes initiated net phytoplankton growth in ice-free waters on the shelf and in stretches of open water over the partially ice-covered deep ocean. Chi a concentrations in the upper water column were moderate (0.2–0.8 g l–1), but significantly above winter values. Later in the season (16 Feb–11 March), a phytoplankton bloom with surface Chl a concentrations ranging from 1.6–2.3 g l–1 was encountered in an area further to the east. We suggest that the upper water column must have been stratified in this region for time scales of weeks to faciliate bloom development. Bacterial biomass and productivity generally paralleled the seasonal development of the phytoplankton. Nitrate concentrations in the upper mixed layer were substantially lower than would be expected from the existing phytoplankton standing stock, suggesting that heterotrophic consumption of organic matter by bacteria and zooplankton removed a large fraction of the primary production. The shallow seasonal pycnocline was eventually eroded by the passage of a storm, resulting in a homogeneous distribution of phytoplankton biomass over the entire water column, followed by sedimentation and deposition of phytodetritus on the sea floor. After the storm induced destratification, bacterial productivity was particularly high, amounting to more than half of the primary production (range: 10%–120%) in the upper water column. Subsequently, phytoplankton biomass in the upper water column decreased to values <1 g Chl a l–1. The combination of low incident irradiances and incessant deep mixing prevented the phytoplankton biomass to increase again. During the last week of the investigation, extensive new-ice formation was observed. A major fraction of the residual surface plankton was incorporated into new sea ice, thus terminating the pelagic growth season of the phytoplankton in the eastern Weddell Sea.  相似文献   

15.
Summary Four major functional units have been identified in the Southern Ocean and the mechanisms that control the dynamics of nutrients and phytoplankton are detailed for the different sub-systems. The very productive Coastal and Continental Shelf Zone (CCSZ, 0.9 M km 2) can experience severe macronutrient depletion paralleling intense diatom-dominated phytoplankton blooming (maximum > 8 mg Chl a m–3) at the ice edge. In the Seasonal Ice Zone (SIZ, 16 M km 2), dramatic variations in the hydrological structure occur in surface waters during the spring to summer retreat of the pack-ice, changing from a well-mixed system to a stratified one within the reaches of the ice edge. Grazing activity of euphausiids limits phytoplankton biomass to a moderate level (Chl a maximum around 4 mg m–3). A shift from new production to a regenerated production regime has been demonstrated during spring, along with the key role played by protozoans in controlling high ammonium concentrations (maximum > 2 M) in the surface layers. The well-mixed Permanently Open Ocean Zone (POOZ, 14 M km 2) is characterised by variable N/Si ratios in surface waters along a north-south transect: at the northern border of the POOZ (N/Si = 0.25) silicate concentrations as low as < 10 M could help limit the phytoplankton growth. Although favourable conditions have been demonstrated for the initiation of blooms in spring in the Antarctic Circumpolar Current, it appears that critical-depth/ mixing-depth relationships control maximum chlorophyll a concentrations < 1 g l–1 during summer. The POOZ is usually not influenced directly by euphausiids, except for the Scotia Sea and Drake Passage where migrations of krill from the adjacent SIZ are usual. Mesoscale eddies are typical of the Polar Front Zone (FPZ, 3 M km 2): significant increases in phytoplankton biomass have been reported in this frontal area (maximum Chl a = 2 mg m–3). Food web and biogeochemical cycles in this sub-system are poorly documented. The question of limitation of the primary production by eolian-transported trace-metals in these different sub-systems is still a matter of debate, although clear iron limitation has been evidenced for offshore waters of the Ross Sea.Data presented here were partly collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

16.
In the Great Salt Lake of Utah, the brine shrimp Artemia franciscanaKellogg is an important food resource for birds and they produce dormant cysts that are harvested and used extensively in the aquaculture industry. We analyzed the limnological factors controlling Artemia growth and cyst production over 12 months in 1994 and 1995. Laboratory experiments showed that inter-brood intervals were highly dependent on temperature and slightly on food level. At optimal temperatures and nutritious food, juveniles reached reproductive size within 7 d in the laboratory. In winter when temperatures were less than 3 °C, Artemia were absent from the lake, phytoplankton abundance was high (13 Chl a g l–1), and the dominant grazers were ciliated protozoans. In the spring, cysts hatched when phytoplankton was abundant (15–30 g Chl a l–1), and the Artemia grew and produced large clutches of ovoviviparous eggs. Estimated naupliar production from these eggs was 80 l–1 from April to May. Despite the high production of nauplii, Artemia densities declined to 8 l–1by June and the growing shrimp population grazed down the phytoplankton resource to <1 g Chl a l–1. With the depleted phytoplankton food resource during the summer, Artemia growth slowed, lipid indices decreased, clutch sizes declined, and females switched primarily to oviparous cyst production. During the summer, there was limited production of ovoviviparous eggs, and limited recruitment of juveniles, probably due to low food. Although oviparous reproduction began in June, more than 90% of the cysts were produced after July when female densities had declined to 1.5 l–1, but nearly all of them were producing cysts. Estimated cyst production was 650000 m–2, or 4.54 × 106 kg dry weight for the entire lake. The reported commercial harvest took 21% of the 1994 cyst production. That harvest had little impact on the subsequent year's population, as Artemia densities were ultimately controlled by algal production in the lake.  相似文献   

17.
Y. Z. Yacobi 《Freshwater Biology》2003,48(10):1850-1858
1. Pigment composition was measured in natural phytoplankton samples from Lake Kinneret, Israel. From March through June 1998, the dinoflagellate Peridinium gatunense Nygaard mostly contributed more than 95% of the algal biomass. Peak densities were found in April, close to the water surface, with >109 cells m?3, chlorophyll (Chl) a concentration of 380 mg m?3 and areal Chl‐a density of >1300 mg m?2. 2. Cellular concentrations of Chl‐a changed between 201 and 282 pg cell?1, but did not show a defined temporal fluctuation. 3. The mass ratio of Chl‐c to Chl‐a changed from March to June between 0.16 and 0.22, and the peridinin to Chl‐a ratio changed from 0.25 to 0.41. Neither ratio showed a clear pattern of seasonal change. Conversely, there was a progressive increase in diadinoxanthin and β‐carotene ratios to Chl‐a through the season, parallel to the increase in photon flux impinging upon the lake surface. The diadinoxanthin to Chl‐a ratio changed from 0.11 to 0.28 and the β‐carotene to Chl‐a ratio varied from 0.03 to 0.08 from March through June. 4. Diatoxanthin was not detected in natural samples. However, it was present in experiments with P. gatunense cultures, when concentration of diatoxanthin increased rapidly, concurrent with a decrease in diadinoxanthin and β‐carotene concentrations, while Chl‐c and peridinin ratios to Chl‐a were almost stable with photon flux increase. 5. The seasonal variation in cellular pigmentation of P. gatunense in Lake Kinneret suggests that accumulation of photoprotective pigments is essential for optimisation of photosynthetic activity of this large dinoflagellate.  相似文献   

18.
Temperature dependent changes in absorbance and fluorescence of chlorophyll a (Chl a) were analyzed in membrane fragments and in a Chl-protein complex reconstituted with lipids isolated from the cyanobacterium Anacystis nidulans. Absorbance versus temperature curves measured at 656 nm showed an inflection point at 23–24°C and at 14–16°C in the membrane fragments prepared from A. nidulans cells, grown at 39° and 25°C, respectively. Temperature-induced absorbance changes measured at 680 and 696 nm did not show clear break points. The presence of lipids was essential in order to see a clear maximum in the fluorescence versus temperature curve of Chl a in a Chl-protein complex. It is suggested that a specific form of Chl a may be associated with lipids in the thylakoid membranes and that this form of Chl a may be responsible for temperature-induced absorbance and fluorescence yield changes in this cyanobacterium.Abbreviations Chl chlorophyll - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - SDS sodium dodecyl sulphate DPB-CIW No. 802.  相似文献   

19.
Egg production of a brackish water calanoid copepod Acartia bifilosa was measured in the laboratory in different chlorophyll (Chl) a concentrations (0-24 mgr; l-1) and temperatures 4-24C), and the cephalothorax length and carbon content of females were determined. Egg production was positively correlated both with Chl a concentration and with temperature; highest egg production was obtained with 14-20 g Chl a l-1 and at 13-18°C. There was also a significant positive correlation between egg production and female length-specific carbon content (g C m-1). However, no correlation was observed between egg production and cephalothorax length of females. Female carbon content changed during the 3 day experiments; carbon content was positively related to Chl a concentration and negatively related to temperature. We conclude that food availability (Chl a concentration), rather than temperature, limits the egg production of A.bifilosa in the present study area in the northern Baltic Sea. Further, both food concentration and temperature affect egg production not only through the direct effect on the numbers of eggs produced per female, but also through their effect on female carbon content.   相似文献   

20.
Observations on the first red tide off Kuwait, Arabian Gulf, yielded high biomass [55.4-262.7 g chlorophyll (Chl) a l-1] and primary production (507.9-571.2 g C h-1l-1), comparable with some of the highest values reported. There were contrasting changes in the carbon assimilation ratios, composition of the phytoplankton and the contribution of nanoplankton (<20 m) between 11 and 12 May. On 11 May, carbon assimilation by nanoplankton was 2.2 g C (g Chl a)-1 h-1, but increased to 9.2 g C (g C (g Chl a)-1 h-1 the following day. Nanoplankton contributed 56 and 9% of Chl a and production, respectively, on 11 May, while net plankton (>20 m) accounted for >65% of the biomass and primary production on 12 May. Picoplankton (<3 m) contributed <8% of Chl a and <3% of production. Frequent sampling will be necessary to capture such dynamic changes and ephemeral events in these waters.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号