共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhao M Harris SE Horn D Geng Z Nishimura R Mundy GR Chen D 《The Journal of cell biology》2002,157(6):1049-1060
Functions of bone morphogenetic proteins (BMPs) are initiated by signaling through specific type I and type II serine/threonine kinase receptors. In previous studies, we have demonstrated that the type IB BMP receptor (BMPR-IB) plays an essential and specific role in osteoblast commitment and differentiation. To determine the role of BMP receptor signaling in bone formation in vivo, we generated transgenic mice, which express a truncated dominant-negative BMPR-IB targeted to osteoblasts using the type I collagen promoter. The mice are viable and fertile. Tissue-specific expression of the truncated BMPR-IB was demonstrated. Characterization of the phenotype of these transgenic mice showed impairment of postnatal bone formation in 1-mo-old homozygous transgenic mice. Bone mineral density, bone volume, and bone formation rates were severely reduced, but osteoblast and osteoclast numbers were not significantly changed in the transgenic mice. To determine whether osteoblast differentiation is impaired, we used primary osteoblasts isolated from the transgenic mice and showed that BMP signaling is blocked and BMP2-induced mineralized bone matrix formation was inhibited. These studies show the effects of alterations in BMP receptor function targeted to the osteoblast lineage and demonstrate a necessary role of BMP receptor signaling in postnatal bone growth and bone formation in vivo. 相似文献
2.
3.
Inhibin is an antagonist of bone morphogenetic protein signaling 总被引:7,自引:0,他引:7
4.
5.
6.
Shimizu T Tanaka T Iso T Matsui H Ooyama Y Kawai-Kowase K Arai M Kurabayashi M 《The Journal of biological chemistry》2011,286(21):19138-19148
7.
Bone morphogenetic proteins (BMPs) are multifunctional growth factors and play crucial roles during embryonic development, skeletal development, and cell fate determination. Their signals are transduced from cell membrane to the nucleus through intracellular signaling mediators. At present, different signaling pathways have been identified, and elaborate of network of regulators involved in the signaling control. The aim of the present review is to describe the recent understanding of BMPs signaling with emphasis on the regulation of its signal transduction at extracellular level, intracellular level, Smad-interacting factors in the nucleus, and Smad-independent signaling pathways, respectively. 相似文献
8.
Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2 总被引:1,自引:0,他引:1
JD Kim H Kang B Larrivée MY Lee M Mettlen SL Schmid BL Roman Y Qyang A Eichmann SW Jin 《Developmental cell》2012,23(2):441-448
Bone morphogenetic proteins (BMPs) have diverse functions during development in vertebrates. We have recently shown that BMP2 signaling promotes venous-specific angiogenesis in zebrafish embryos. However, factors that confer a context-dependent proangiogenic function of BMP2 signaling within endothelial cells need to be identified. Here, we report that Disabled homolog 2 (Dab2), a cargo-specific adaptor protein for Clathrin, is essential to mediate the proangiogenic function of BMP2 signaling. We find that inhibition of Dab2 attenuates internalization of BMP receptors and abrogates the proangiogenic effects of BMP signaling in endothelial cells. Moreover, inhibition of Dab2 decreases phosphorylation of SMAD-1, 5, and 8, indicating that Dab2 plays an essential role in determining the outcome of BMP signaling within endothelial cells and may provide a molecular basis for a context-dependent proangiogenic function of BMP2 signaling. 相似文献
9.
Highlights? mVam2 mediates endocytic transport from late endosomes to lysosomes ? mVam2 is essential for assembly of large apical vacuoles in visceral endoderm ? Loss of mVam2 results in hyperactivation of BMP signaling ? The mVam2-dependent BMP attenuation contributes to patterning in gastrulation 相似文献
10.
Irie A Habuchi H Kimata K Sanai Y 《Biochemical and biophysical research communications》2003,308(4):858-865
Although genetic studies have suggested that heparan sulfate (HS) is involved in bone morphogenetic protein (BMP)-mediated embryonic morphogenesis, it is unclear whether HS is directly involved in BMP-mediated signaling. Here, we investigate the involvement of HS in BMP-7 signaling. We show that HS and heparin chains specifically bind to BMP-7. Digestion of cell-surface HS with heparitinase interferes with BMP-7-mediated Smad phosphorylation in ROS 17/2.8 osteoblastic cells. Inhibiting sulfation of cell-surface HS with chlorate also causes interruption of Smad phosphorylation. Addition of exogenous heparin to ROS 17/2.8 cells prevents BMP-7-mediated Smad phosphorylation rather than enhances the BMP-7 signal, suggesting that HS should be anchored on the plasma membrane for BMP signaling. Moreover, BMP-7 binding to ROS 17/2.8 cells is inhibited by chlorate treatment and exogenous application of heparin. These results demonstrate that BMP-7 specifically binds to cell-surface HS and the BMP-7-HS interaction is required for BMP-7 signaling. 相似文献
11.
12.
Fukuda T Kohda M Kanomata K Nojima J Nakamura A Kamizono J Noguchi Y Iwakiri K Kondo T Kurose J Endo K Awakura T Fukushi J Nakashima Y Chiyonobu T Kawara A Nishida Y Wada I Akita M Komori T Nakayama K Nanba A Maruki Y Yoda T Tomoda H Yu PB Shore EM Kaplan FS Miyazono K Matsuoka M Ikebuchi K Ohtake A Oda H Jimi E Owan I Okazaki Y Katagiri T 《The Journal of biological chemistry》2009,284(11):7149-7156
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by congenital malformation of the great toes and by progressive heterotopic bone formation in muscle tissue. Recently, a mutation involving a single amino acid substitution in a bone morphogenetic protein (BMP) type I receptor, ALK2, was identified in patients with FOP. We report here that the identical mutation, R206H, was observed in 19 Japanese patients with sporadic FOP. This mutant receptor, ALK2(R206H), activates BMP signaling without ligand binding. Moreover, expression of Smad1 and Smad5 was up-regulated in response to muscular injury. ALK2(R206H) with Smad1 or Smad5 induced osteoblastic differentiation that could be inhibited by Smad7 or dorsomorphin. Taken together, these findings suggest that the heterotopic bone formation in FOP may be induced by a constitutively activated BMP receptor signaling through Smad1 or Smad5. Gene transfer of Smad7 or inhibition of type I receptors with dorsomorphin may represent strategies for blocking the activity induced by ALK2(R206H) in FOP. 相似文献
13.
YY1 activates Msx2 gene independent of bone morphogenetic protein signaling 总被引:1,自引:0,他引:1 下载免费PDF全文
Tan DP Nonaka K Nuckolls GH Liu YH Maxson RE Slavkin HC Shum L 《Nucleic acids research》2002,30(5):1213-1223
Msx2 is a homeobox gene expressed in multiple embryonic tissues which functions as a key mediator of numerous developmental processes. YY1 is a bi-functional zinc finger protein that serves as a repressor or activator to a variety of promoters. The role of YY1 during embryogenesis remains unknown. In this study, we report that Msx2 is regulated by YY1 through protein–DNA interactions. During embryogenesis, the expression pattern of YY1 was observed to overlap in part with that of Msx2. Most notably, during first branchial arch and limb development, both YY1 and Msx2 were highly expressed, and their patterns were complementary. To test the hypothesis that YY1 regulates Msx2 gene expression, P19 embryonal cells were used in a number of expression and binding assays. We discovered that, in these cells, YY1 activated endogenous Msx2 gene expression as well as Msx2 promoter–luciferase fusion gene activity. These biological activities were dependent on both the DNA binding and activation domains of YY1. In addition, YY1 bound specifically to three YY1 binding sites on the proximal promoter of Msx2 that accounted for this transactivation. Mutations introduced to these sites reduced the level of YY1 transactivation. As bone morphogenetic protein type 4 (BMP4) regulates Msx2 expression in embryonic tissues and in P19 cells, we further tested whether YY1 is the mediator of this BMP4 activity. BMP4 did not induce the expression of YY1 in early mouse mandibular explants, nor in P19 cells, suggesting that YY1 is not a required mediator of the BMP4 pathway in these tissues at this developmental stage. Taken together, these findings suggest that YY1 functions as an activator for the Msx2 gene, and that this regulation, which is independent of the BMP4 pathway, may be required during early mouse craniofacial and limb morphogenesis. 相似文献
14.
15.
16.
Yonezawa T Lee JW Hibino A Asai M Hojo H Cha BY Teruya T Nagai K Chung UI Yagasaki K Woo JT 《Biochemical and biophysical research communications》2011,(2):260-265
Sepsis, the systemic response to infection, is the leading cause of death in the intensive care units worldwide. Septic patients can succumb through the development of early refractory hypotension or late multiple organ dysfunction. Misregulation of apoptosis during sepsis may contribute to cellular dysfunction and multiple organ dysfunction. Utilizing a tissue culture model which mimics the human disease, we demonstrate that the addition of sera derived from septic patients induces apoptosis in human fibroblast cells. Addition of septic sera to 2fTGH cells induced apoptosis by activating caspase 8, caspase 3 and DNA fragmentation factor 40 (DFF 40). Interestingly, the addition of septic sera to cells which lack STAT1 (U3A cells) did not activate DFF 40. U3A cells were also shown to be resistant to septic serum induced apoptosis. These data suggest that DFF 40 mediated apoptosis plays a significant role in mediating sepsis induced cellular dysfunction. 相似文献
17.
Liu Z Matsuoka S Enoki A Yamamoto T Furukawa K Yamasaki Y Nishida Y Sugiyama S 《Development, growth & differentiation》2011,53(6):822-841
Studies in Xenopus have shown that the C-terminal domain phosphatase-like domain (CPD) phosphatase Dullard is essential for proper neural development via inhibition of bone morphogenetic protein (BMP) signaling receptors. In contrast, the orthologous budding yeast Nem1 and human Dullard have been shown to dephosphorylate the phosphatidate phosphatases yeast Smp2/Pah1 and human Lipin, and the relationship between phospholipid metabolism and BMP signaling remain unsolved. Here we report evidence that the Dullard-Lipin phosphatase cascade in Drosophila can regulate BMP signaling, most likely by affecting the function of the nuclear envelope. Manipulating expression levels of either the Drosophila Dullard gene, d-dullard (ddd) or the Lipin gene, DmLpin affected wing vein formation in a manner suggesting a negative effect on BMP signaling. Furthermore, both genes exhibit genetic interaction with BMP signaling pathway components, and can affect the levels of phosphorylated-Mothers against dpp (p-Mad). Although changing ddd expression levels did not have an obvious effect on overall nuclear envelope morphology as has been shown for yeast nem1, the nuclear import machinery components Importin-β and RanGAP were mislocalized and membrane lipid staining was altered in cells overexpressing ddd. Considering the known genetic interaction between Nup84 complex nucleoporins and nem1 in yeast, and the recently reported requirement for components from the orthologous nucleoporin complex in the nuclear translocation of Drosophila Mad (Chen & Xu 2010), it is likely that the role of Drosophila Dullard in regulating membrane lipid homeostasis is conserved and is critical for normal BMP signaling. 相似文献
18.
Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes 总被引:7,自引:0,他引:7
Mesenchymal cells can differentiate into osteoblasts, adipocytes, myoblasts, or chondroblasts. Whether mesenchymal cells that have initiated differentiation along one lineage can transdifferentiate into another is largely unknown. Using 3T3-F442A preadipocytes, we explored whether extracellular signals could redirect their differentiation from adipocyte into osteoblast. 3T3-F442A cells expressed receptors and Smads required for bone morphogenetic protein (BMP) signaling. BMP-2 increased proliferation and induced the early osteoblast differentiation marker alkaline phosphatase, yet only mildly affected adipogenic differentiation. Retinoic acid inhibited adipose conversion and cooperated with BMP-2 to enhance proliferation, inhibit adipogenesis, and promote early osteoblastic differentiation. Expression of BMP-RII together with BMP-RIA or BMP-RIB suppressed adipogenesis of 3T3-F442A cells and promoted full osteoblastic differentiation in response to retinoic acid. Osteoblastic differentiation was characterized by induction of cbfa1, osteocalcin, and collagen I expression, and extracellular matrix calcification. These results indicate that 3T3-F442A preadipocytes can be converted into fully differentiated osteoblasts in response to extracellular signaling cues. Furthermore, BMP and retinoic acid signaling cooperate to stimulate cell proliferation, repress adipogenesis, and promote osteoblast differentiation. Finally, BMP-RIA and BMP-RIB induced osteoblast differentiation and repressed adipocytic differentiation to a similar extent. 相似文献
19.
Type 2 diabetes mellitus impairs osteogenesis in bone marrow stromal cells (BMSCs). Bone morphogenetic protein 2 (BMP2) has been extensively applied for bone defect restoration and has been shown to activate the Wnt signaling pathway. The objective of this study was to investigate the effects of BMP2 on the cell proliferation and osteogenesis of type 2 diabetic BMSCs in rats and explore whether BMP2 induced osteogenesis via the stimulation of Wnt signaling pathway. The cell experiments were divided into DM (diabetic BMSCs), BMP25 (induced with 25 ng/ml BMP2), BMP100 (induced with 100 ng/ml BMP2) and BMP25 + XAV groups. All cells with or without the different concentrations of BMP2 were cultured under the same experimental conditions. The in vitro results indicated that BMP2 enhanced cell proliferation by 130%–157% and osteogenic differentiation by approximately two-fold in type 2 diabetic BMSCs. The expression levels of β-catenin, cyclin D1, Runx2 and c-myc related to the Wnt signaling pathway were also upregulated from 180% to 212% in BMP2-induced type 2 diabetic rat BMSCs, while the level of GSK3β decreased to 43%. In BMP2-induced type 2 diabetic BMSCs with calcium phosphate cement (CPC) scaffolds for osteoblast study in vivo, the appearance of newly formed bone dramatically increased to 175% compared with type 2 diabetic BMSCs. These data demonstrated that BMP2 enhanced bone regeneration in diabetic BMSCs by stimulating the Wnt signaling pathway with the accumulation of β-catenin and the depressed expression of GSK3β. Diabetic BMSCs associated with BMP2 might be a potential tissue-engineered construct for bone defects in type 2 diabetes mellitus. 相似文献
20.