首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS) on the in vitro activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase isolated from senescing carnation petals were investigated. In contrast to a previous proposal, DPSS at 1 mM did not inhibit the in vitro activity of ACC oxidase. It was confirmed that DPSS does not inhibit ACC synthase activity. DPSS probably does not exert its inhibitory action on ethylene production by a direct action on ACC oxidase and ACC synthase, but by some unknown action.  相似文献   

2.
The effects of a novel preservative for cut carnation flowers, 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS), were investigated. DPSS extended the vase life of cut carnation flowers not only by continuous treatment but pulse treatment as well. This inhibition of senescence by DPSS appeared to depend on that of ethylene production in carnation flowers. DPSS provided no protection from the action of ethylene nor did it inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) synthase. It did inhibit ACC-dependent ethylene production in carnation petal discs, suggesting possible potential for inhibiting ACC oxidase.  相似文献   

3.
The senescence of flower petals is a highly regulated developmental process which requires active gene expression and protein synthesis. The biochemical changes associated with petal senescence in carnation flowers include an increase in hydrolytic enzymes, degradation of macro-molecules, increased respiratory activity and a climacteric-like increase in ethylene production. It is clear that the gaseous phytohormone ethylene plays a critical role in the regulation and coordination of senescence processes. Many reviews on physiology and mode of action of ethylene are available. Molecular cloning led to the isolation of genes involved in ethylene biosynthesis and action. This review describes the current status of the studies on regulation of ethylene biosynthesis and ethylene response in carnation flowers. An overview is given of studies on senescence-related gene expression and possibilities to improve postharvest longevity by genetic engineering.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -amino-isobutyric acid - AOA amino oxyacetic acid - AVG aminoathoxyvinyl glycine - DACP diazocyclopentadiene - EFE ethylene forming enzyme - MACC malonyl 1-aminocyclopropane-1-carboxylic acid - MTA 5-methylthio-adenosine - NBD 2,5 norbornadiene - ppb parts per billion - SAM S-adenosyl-methionine - STS silver thiosulphate  相似文献   

4.
The effect of cis-propenylphosphonic acid (PPOH), a structural analoge of ethylene, on flower wilting and ethylene production was investigated using cut carnation flowers which are very sensitive to ethylene. Wilting (petal in-rolling) of the flowers was delayed by continuously immersing the stems in a 5–20 mM PPOH solution. In addition, the continuous treatment with PPOH markedly reduced autocatalytic ethylene production of the petals accompanying senescence. This reduction of autocatalytic ethylene production was considered responsible for the inhibitory effect of PPOH on flower wilting. The inhibitory activity of trans-propenylphosphonic acid (trans-PPOH), on both flower wilting and the autocatalytic ethylene production accompanying senescence was markedly lower than that of PPOH, suggesting that PPOH action is stereoselective. PPOH may be of interest as a new, water-soluble inhibitor of wilting and autocatalytic ethylene production in cut carnation flowers.  相似文献   

5.
The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp.  相似文献   

6.
Carnations have anthocyanins acylated with malate. Although anthocyanin acyltransferases have been reported in several plant species, anthocyanin malyltransferase (AMalT) activity in carnation has not been identified. Here, an acyl donor substance of AMalT, 1-O-β-d-malylglucose, was extracted and partially purified from the petals of carnation. This was synthesized chemically to analyze AMalT activity in a crude extract from carnation. Changes in the AMalT activity showed close correlation to the accumulation of pelargonidin 3-malylglucoside (Pel 3-malGlc) during the development of red petals of carnation, but neither AMalT activity nor Pel 3-malGlc accumulation was detectable in roots, stems and leaves.  相似文献   

7.
The ability of shoot tips from carnation (Dianthus caryophyllus L., var. Eolo) cultured in vitro to develop resistance to freezing in liquid nitrogen depends on the physiological state of the cell material and the pretreatment conditions. Regrowth rates close to 100% have been obtained with apical shoot tips isolated from 2 month-old stems, precultured on medium supplemented with sucrose (0.75M) and treated with dimethylsulfoxide (5% or more). Resistance of axillary shoot tips decreased progressively as a funtion of their distance from the apical shoot tip. During the development of the stem from axillary buds (obtained by cutting), progressive increases in the regrowth rate of frozen apices were noted, from 30% before cutting (axillary buds) to 98% after 3 weeks of culture.Abbreviations DMSO dimethylsulfoxide - LN liquid nitrogen  相似文献   

8.
Carnation tissue was allowed to vitrify in liquid culture and ethylene production, ACC content and capacity to convert ACC to ethylene were measured in comparison to tissue developing normally on solid medium. Flask atmospheres of liquid cultures accumulated ethylene at a higher rate during the first four days. Daily ethylene production by vitrifying material decreased later. Ethylene emission by vitrifying tissues always remained above controls when subcultured daily to fresh medium. Explants and microsomal preparations from vitrifying carnations converted ACC to ethylene at a higher degree from the first day in liquid medium. ACC level markedly increased in vitrifying tissues during the first two days of liquid culture. Raising the level of ethylene in the atmosphere of solid cultures did not induce vitrification symptoms nor did use of inhibitors of ethylene biosynthesis in liquid cultures prevent the process. The role of ethylene in vitrification is reappraised.  相似文献   

9.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

10.
11.
New derivatives of aminooxyacetic acid were tested for their ability to inhibit ethylene formation in higher plants. Treatments with {[(isopropylidene)-aminojoxy}-acetic acid-2-(methoxy)-2-oxoethyl ester, {[(isopropylidene)-aminojoxy}-acetic acid-2-(hexyloxy)-2-oxoethyl ester or {[(cyclohexylidene)-amino]oxy}-acetic acid-2-(isopropyloxy)-2-oxoethyl ester reduced ethylene evolution by leaf discs of oilseed rape and drought-stressed barley leaves. The new compounds delayed senescence of cut carnation flowers. The endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and its N-malonyl conjugate were also reduced in the leaf discs of oilseed rape. This suggests that a step in the biosynthesis of ethylene, prior to the formation of ACC, is inhibited by these new compounds. A lag phase in response suggests that these compounds have to be activated most likely by the production of metabolites with a free aminooxy group.  相似文献   

12.
Flavonoid analysis and supplementation experiments with dihydroflavonols and leucocyanidin on two cyanic, two acyanic and one white/red-variegated flowering strain of Dianthus caryophyllus (carnation) showed that in the acyanic strains recessive alleles (aa) of the gene A interrupt the anthocyanin pathway between dihydroflavonols and leucoanthocyanidins. The instability in the variegated strain involves the same step and is obviously caused by the multiple allele a var . In confirmation of these results, dihydroflavonol 4-reductase activity could be demonstrated in enzyme extracts from cyanic flowers and cyanic parts of variegated flowers but not in preparations from acyanic flowers or acyanic parts. The enzyme catalyzes the stereospecific reduction of (+)dihydrokaempferol to (+)-3,4-leucopelargonidin with NADPH as cofactor. A pH optimum around 7.0 and a temperature optimum at 30° C was determined, but the reduction reaction also proceeded at low temperatures. (+)Dihydroquercetin and (+)dihydromyricetin were also reduced to the respective flavan-3,4-cis-diols by the enzyme preparations from carnation flowers, and were even better substrates than dihydrokaempferol.These investigations were supported by grants from Fonds zur Förderung der wissenschaftlichen Forschung and Deutsche Forschungsgemeinschaft. The authors thank the market-gardens Ing. K. Rungaldier (Vienna, Austria), A. Sinner (Tübingen, FRG) and Barbaret & Blanc GMBH (Horhausen, FRG) for generous support with plant material.  相似文献   

13.
R. Nichols 《Planta》1976,133(1):47-52
Summary Histological examination of the ovary walls from ethylene-treated cut flowering stems of the carnation showed that the cells had enlarged and this appeared to account for the increased growth of the ovary which follows ethylene treatment of this flower. Sugar analyses of the flower parts indicated that growth of the ovary was accompanied by an increase in the ratio of sucrose to reducing sugars in the petals and ovary, and a net increase in sugars in the ovary. A sugar, tentatively identified as xylose, increased in the petals after ethylene treatment. Nitrogen, phosphorus and potassium contents of the ovary also increased after the ethylene treatment. The results, consistent with the hypothesis that sucrose is translocated in response to ethylene, are discussed in relation to previous work relating to the involvement of ethylene in flower senescence.  相似文献   

14.
The ethylene releasing compound, 2-chloroethylphosphonic acid (ethephon) inhibited nodule development in common bean (Phaseolus vulgaris L.) plants. In contrast, inhibitors of ethylene synthesis or its physiological activity enhanced nodulation. In a co-culture of bean seeds and rhizobia, ethephon inhibited rhizobial growth while inhibitors of ethylene synthesis or action did not influence the growth and proliferation of rhizobia. These data emphasize the role of ethylene as a regulator of nodulation in determinate nodulators and indicate that the ethylene signaling pathway involved in the nodulation process is not limited to the plant host but also involves the bacterial symbiont.  相似文献   

15.
Chloroplast ultrastructural and photochemical features were examined in 6-d-old barley (Hordeum vulgare L. cv. Sundance) plants which had developed in the presence of 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone (San 9785). In spite of a substantial modification of the fatty-acid composition of thylakoid lipids there were no gross abnormalities in chloroplast morphology, and normal amounts of membrane and chlorophyll were present. Fluorescence kinetics at 77K demonstrated considerable energetic interaction of photosystem (PS)I and PSII chlorophylls within the altered lipid environment. An interference with electron transport was indicated from altered room-temperature fluorescence kinetics at 20°C. Subtle changes in the arrangements of chloroplast membranes were consistently evident and the overall effects of these changes was to increase the proportion of appressed to nonappressed membranes. This correlated with a lower chlorophyll a/b ratio, an increase in the amount of light-harvesting chlorophylls as determined by gel electrophoresis and fluorescence emission spectra, and an increase in excitation-energy transfer from PSII to PSI, as predicted from current ideas on the organisation of photosystems in appressed and non-appressed thylakoid membranes.Abbreviations CP1 P700-chlorophyll a protein - Fo, Fm, Fv minimal, maximal and variable fluorescence yield - LHCP light-harvesting chlorophyll-protein complex - PSI, PSII photosystem I, II - San 9785 4-chloro-5(dimethylamino)-2-phenyl-3(2H)-pyridazinone  相似文献   

16.
(E)-9-(1-pyrenyl)-4-hydroxynon-2-enal (FHNE), a fluorescent probe of (E)-4-hydroxynon-2-enal (HNE) is synthesised in seven steps and in 35% overall yield, starting from commercially available 1-pyrencarboxyaldehyde. When incubated with cultured HeLa cells this fluorescent probe penetrates cells and particularly concentrates in the region surrounding the nucleus. As the parent compound, HNE it is able to induce the activation of heat shock factor (HSF) and it is able to induce the binding of HSF to heat shock element (HSE).  相似文献   

17.
The biocatalytic reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol was successfully conducted with high enantioselectivity using immobilized whole cells of a novel strain Acetobacter sp. CCTCC M209061, newly isolated from kefir. Compared with other microorganisms that were investigated, Acetobacter sp. CCTCC M209061 was shown to be more effective for the bioreduction reaction, and afforded much higher yield and product enantiomeric excess (e.e.). The optimal buffer pH, co-substrate concentration, reaction temperature, substrate concentration and shaking rate were 5.0, 130.6 mM, 30 °C, 6.0 mM and 180 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 71% and >99%, respectively, which are much higher than those reported previously. Additionally, the established biocatalytic system proved to be efficient for the bioreduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol with excellent yield and product e.e. The immobilized cells manifested a good operational stability under the above reaction conditions since they retained 70% of their catalytic activity after ten cycles of use.  相似文献   

18.
Pierre Bennoun  Yung-sing Li 《BBA》1973,292(1):162-168
Simultaneous measurements of hydroxylamine photo-oxidation and fluorescence induction were performed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). The results provide a justification for the common use of fluorescence data to estimate the concentration of active System II centers in the presence of inhibitors.The addition of DCMU to dark-adapted chloroplasts under special conditions induces a large increase of the initial yield of fluorescence. A reversible inactivation of part of the System II centers is responsible for this effect. Similar data were obtained with other classical inhibitors of oxygen evolution.  相似文献   

19.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) found in chewing tobacco, snuff, cigarettes, and cigars is a tobacco-specific nitrosamine and classified as a possible human carcinogen (Class 2B) by the International Agency for Research on Cancer (IARC). NNK given intraperitoneally was seen to induce lung and liver adenomas.To evaluate the genotoxicity of NNK in vivo, NNK was intraperitoneally administered to Muta™ Mouse at two concentrations (125 and 250 mg/kg, once a week for 4 weeks) followed by the measurement of mutant frequencies in the lacZ and cII genes from lung and liver in the same mice. Characterization of the types of the mutation was determined by sequencing the cII genes from mutant plaques. The mutant frequencies in both target genes from both organs dose-dependently increased up to 10 times compared to those of the control group. For the types of mutations, the ratio of the G:C to A:T mutation in the total number of mutants was less than the ratio of A:T to T:A and A:T to C:G transversion, contrary to a previous report [Cancer Res, 49 (1989) 5305]. The A:T to T:A transversion was the most highly induced mutation both in the lung and liver cII genes. The increasing rate of mutant frequencies in lung and liver over the vehicle control was 55 and 56 times, respectively, while the increasing rate of G:C to A:T transition was only 1.9 and 2.8 times, respectively.These observations show that NNK predominantly induces DNA adducts leading to A:T to T:A and/or A:T to C:G mutations in the transgene.  相似文献   

20.
A.L. Etienne 《BBA》1974,333(2):320-330
We have studied the 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) action on the different S states by oxygen, fluorescence and luminescence measurements.We show that no oxygen is evolved during a flash following the addition of DCMU to centers in their S3 state. This suggests that oxygen inhibition cannot be attributed solely to a blocking between Q and A. For all the photoinactive states, the only remaining pathway for the quencher reoxidation, in the presence of DCMU, appears to proceed through a back reaction. Therefore, the complete quencher regeneration still occurring when the fourth positive charge is formed in the presence of DCMU is also an indication of an action by DCMU at the donor side.The data well fit the model in which the oscillations of the fluorescence yield and their damping are attributed to a fast equilibrium between two forms of the centers: a photoactive and a photoinactive form, both of which are quenchers. The equilibrium constant depends on the number of positive charges stored and DCMU changes the characteristics of this equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号