首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathogenicity of different isolates of Fusarium oxysporum obtained from plants of Gerbera (Gerbera jamesonii), Chrysanthemum (Chrysanthemum morifolium), Paris daisy (Argyranthemum frutescens) and African daisy (Osteospermum sp.), all in the family Asteraceae, was tested on different cultivars of these hosts, to assess their pathogenicity. The reactions were compared with those of isolates of F. oxysporum f. sp. chrysanthemi and of f.sp. tracheiphilum obtained from the American Type Culture Collection. We found that isolates of F. oxysporum f. sp. chrysanthemi can be distinguished as three physiological races on the basis of their pathogenicity to the panel of differential cultivars. Sequencing of the intergenic spacer (IGS) region of ribosomal DNA (rDNA) and phylogenetic analysis showed that the Fusarium races fell into three phylogenetic groups, which coincided with those observed in pathogenicity tests. Analysis of the IGS sequences revealed a high degree of similarity among strains from Italy and Spain from different host species, suggesting that recent outbreaks in these ornamentals were probably caused by introduction of infected nursery material from a common origin.  相似文献   

2.
In the current study, 160 pathogenic strains of Fusarium oxysporum collected from tomato, eggplant and pepper were studied. Eighteen inter‐primer binding site (iPBS)‐retrotransposon primers were used, and these primers generated 205 scorable polymorphic bands. The number of polymorphic bands per primer varied between 9 and 19, with a mean of 11 bands per primer. The highest polymorphism information content (PIC) value was determined as 0.27, and the lowest was 0.05. The unweighted pair‐group method with arithmetic averages (UPGMA) dendrogram including a heat map revealed that the 160 pathogenic strains of F. oxysporum were divided into two main clusters. The first cluster mainly included F. oxysporum f. sp. capsici (FOC) and F. oxysporum f. sp. melongenae (FOMG) isolates. The second cluster mainly comprised F. oxysporum f. sp. lycopersici (FOL) and F. oxysporum f. sp. radicis lycopersici (FORL) isolates. The highest percentage of loci in significant linkage disequilibrium (LD) was detected for FOL, whereas the lowest level of LD was found for FOC, and 95.2%, 99.4%, 99.1% and 97.4% of the relative kinship estimates were less than 0.4 for FOL, FOMG, FORL and FOC, respectively. LD differences were detected among formae speciales, and LD was higher in FOL as compare to FOC species. The findings of this study confirm that iPBS‐retrotransposon markers are highly polymorphic at the intraspecific level in Fusarium spp.  相似文献   

3.
The growth of the phytopathogenic fungus Fusarium oxysporum f. sp. lycopersici race 2 (FOL 2) was observed in dual culture with two soil fungi as biocontrol agents, Trametes versicolor and Pleurotus eryngii. In both cases, an interaction zone with the pathogen was found with the Fusarium’s hyphae becoming free of cytoplasmic content. The enzymatic complex of fungi, studied as biocontrol agents, showed β-(1,3)-glucanase activity, and no other important glucanase activities were noted in all of the media studied. As the principal components of F. oxysporum cell walls are glucans, the results of the positive attack on the cell walls of FOL 2 by the T. versicolor and P. eryngii enzymatic complex demonstrated the contribution of glucanases in the degradation of the hyphal cell walls of F. oxysporum. The lack of cellulase and xylanase activities (acting on plant cell wall polysaccharides) in T. versicolor makes this species a better alternative for the potential control of diseases caused by Fusarium spp.  相似文献   

4.
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.  相似文献   

5.
Drench inoculation of the undisturbed roots of barley seedlings with Fusarium oxysporum f. sp. radicis‐lycopersici (FORL) significantly reduced the primary infection frequency of Blumeria graminis f. sp. hordei (BGH) on the first leaves. The length of secondary hyphae and subsequent conidial production of BGH were also found to be significantly reduced by preinoculation with FORL. The reduction in infection frequency was observed as early as 48 h after inducer treatment, namely when plants were challenge‐inoculated immediately following inoculation with FORL. The induced resistance continued up to 16 days after treatment as indicated by the reduction in infection frequency, up to 22 days after treatment when evaluated as a reduction in the length of secondary hyphae, and up to 35 days after treatment when evaluated as a reduction in conidial production. Characteristics of FORL that may explain its success as an inducer of resistance against barley powdery mildew are discussed.  相似文献   

6.
The bayoud disease, vascular fusariosis of date palm tree (Phoenix dactylifera L.), is caused by the pathogenic fungus Fusarium oxysporum f. sp. albedinis. The characteristic symptoms of the bayoud disease were elicited on detached leaves of F. oxysporum f. sp. albedinis‐susceptible cultivars of date palm trees, which were treated either with the FII (F. oxysporum f. sp. albedinis) fraction purified from the organic extracts of a F. oxysporum f. sp. albedinis liquid culture, or with a solution of fusaric acid. Enniatins, which are secreted by several Fusarium species, were tested at different concentrations and were not capable of inducing symptoms on such detached leaves. The FII (F. oxysporum f. sp. albedinis) fraction was unable to induce necrosis of potato slices, which indicates that it does not contain significant amounts of enniatins. The high‐performance liquid chromatography (HPLC) profiles of the FII (F. oxysporum f. sp. albedinis) fraction showed toxic peaks different from fusaric acid. A fraction, named FII (AZ4), was obtained from culture filtrates of a saprophytic Fusarium strain maintained in the same cultural conditions as for the F. oxysporum f. sp. albedinis. The HPLC profile of the FII (AZ4) fraction did not show the characteristic phytotoxic peaks present in the FII (F. oxysporum f. sp. albedinis) fraction. This finding well agrees with the fact that the FII (AZ4) fraction is not toxic to detached date palm leaves. Moreover, the HPLC profiles of FII fractions obtained from other special forms of F. oxysporum are different the FII (F. oxysporum f. sp. albedinis) profile. The phytotoxic compounds purified from the FII (F. oxysporum f. sp. albedinis) fraction are probably new molecules that may help in understanding the pathogenesis of bayoud disease.  相似文献   

7.
The β‐glucuronidase (gus) reporter gene was integrated into the phytopathogenic fungus Fusarium oxysporum f. sp. radicis‐lycopersici (FORL) in a co‐transformation experiment using the hygromycin B resistance (hph) gene as selective marker, which resulted in the generation of 10 mitotically stable transformants. One transformant, F30, was selected based on the results of prior detailed characterization of the 10 transformants for growth rate, conidia production and pathogenicity in comparison with the wild‐type strain. A strong positive correlation was found between GUS activity and accumulated biomass of in vitro‐grown fungus and therefore GUS activity was used to study fungal growth quantitatively in two tomato lines. Although a parallel increase in lesion development and GUS activity was noted for both tomato lines, a correlation between the GUS activity and disease progression was not always possible. Interestingly, the levels of GUS activity obtained for the more resistant line were higher than those obtained for the susceptible line, indicating that disease progression in tomato caused by FORL may not be related only to the amount of fungal biomass within the root tissue.  相似文献   

8.
The pathogenicity of five isolates of Fusarium oxysporum obtained from infected gerbera (Gerbera jamesonii), chrysanthemum (Chrysanthemum morifolium), Paris daisy (Argyranthemum frutescens) and African daisy (Osteospermum sp.) plants was tested on some varieties of the following Compositae hosts: C. morifolium, G. jamesonii, Argyranthemum frutescens (Paris daisy) and Osteospermum sp. and compared with the host range and pathogenicity of an isolate of F. oxysporum f. sp. chrysanthemi obtained from the ATCC collection. The results indicated that isolates of F. oxysporum from G. jamesonii as well as those from A. frutescens and Osteospermum sp. belong to the forma specialischrysanthemi. The isolate from gerbera was virulent on all tested varieties of gerbera, C. morifolium, A. frutescens and Osteospermumsp. Similar results were obtained testing the isolates obtained from A. frutescens and Osteospermumsp. The strain from C. morifolium infected cultivar of gerbera, A. frutescens and Osteospermum sp. The pathogenicity of isolate of F. oxysporum f. sp. chrysanthemi obtained from the ATCC showed a different cultivar range particularly in the case of chrysanthemum and gerbera.  相似文献   

9.
The utility of fatty acid methyl ester (FAME) profiles for characterization and differentiation of isolates of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was investigated. Two fatty acid analysis protocols of the normal (MIDI) and a modified MIDI method were used for their utility. Only the modified MIDI method allowed a clear differentiation between F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicislycopersici. FAME profiles using the modified MIDI method gave the most consistent and reproducible analyzed fatty acid data. Evaluation of the FAME profiles based on cluster analysis and principal-component analysis revealed that FAME profiles from tested isolates were correlated with the same vegetative compatibility groups (VCGs) compared to the same races in F. oxysporum f. sp. lycopersici. Results indicated that FAME profiles could be an additional tool useful for characterizing isolates and forma species of F. oxysporum obtained from tomato.  相似文献   

10.
Polyclonal antiserum was elicited against a strain of Fusarium oxysporum f.sp. narcissi (GCRI80/26) and a specific and sensitive enzyme-linked immunosorbent assay developed. Antiserum raised to cell wall fractions gave better recognition than that to cytoplasmic fractions. Recognition was equally good in artificially and naturally infected bulbs. Little cross-reactivity in bulb tissue was shown by three other bulb-rotting fungi. Nine isolates of F. oxysporum f.sp. narcissi from a wide geographic area gave similar results in an indirect ELISA of mycelial extracts, although some cross-reactivity was observed with two other Fusarium spp. Four Fusarium spp. and four other fungi showed little cross-reactivity. Ten days after inoculation the pathogen was readily detected in the base plate area of three Narcissus cultivars and points remote from the inoculation site in the most susceptible cultivar. A direct correlation was observed between positive results in the enzyme-linked immunosorbent assay and recovery of the pathogen on selective medium.  相似文献   

11.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

12.
Tomato is a popular vegetable widely grown in the tropics, which is mainly attacked by fusarium wilt incited by Fusarium oxysporum f. sp. lycopersici (FOL). In the present scenario, an ecofriendly alternative strategy such as use of fungi from rhizosphere is being explored to combat the phytopathogen invasion. This study was carried out to evaluate the efficacy of Trichoderma asperellum MSST to promote the growth and yield parameters of tomato S-22, a susceptible variety. This study was also undertaken to manage fusarium wilt disease under in vitro and in vivo conditions. Significant increase in vegetative parameters like root length, shoot length, plant weight and chlorophyll content 60 days after sowing (DAS) was observed. There was reduction in the incidence of fusarium wilt in tomato up to 85%. Increase in the level of total phenol, peroxidase, polyphenoloxidase and phenylalanine ammonium lyase activity at 10th day of pathogen inoculation showed enhancement of plant defence mechanism by T. asperellum MSST against FOL. Overall study revealed that isolate MSST was proven to be potential biocontrol agent showing induced resistance against FOL.  相似文献   

13.
Thirteen species of weed plants were collected between May and September in 2010 and 2011 from eggplant fields representing 11 distinct locations covering a wide geographical area of Turkey. Weeds are potential hosts of many plant pathogens and may not exhibit disease symptoms when colonized. Fusarium spp. were isolated from five monocotyledonous species and eight dicotyledonous species. A total of 212 isolates recovered from weeds were assigned to eight Fusarium species on the basis of morphological characteristics. F. oxysporum was the most frequently isolated species (29.7%), followed by F. solani (19.8%), F. graminearum (13.7%), F. verticillioides (12.7%), F.equiseti (9.9%), F. avenacearum (8.0%), F. proliferatum (3.8%) and F. subglutinans (2.4%). The F. oxysporum isolates from different weed hosts were characterized by means of pathogenicity and vegetative compatibility grouping (VCG) tests. Among these, 29 isolates were found to be pathogenic to eggplant cv. Kemer and re‐isolated as Fusarium oxysporum Schlecht. f. sp. melongenae (Fomg) as evidenced. These isolates from weed hosts were assigned to VCG 0320. This study is the first report of Fomg isolated from weeds in eggplant fields in Turkey. None of the weed species tested showed symptoms of wilting in pot experiments, and F. oxysporum was isolated with greater frequency from all inoculated weeds. The results of this study indicate that several weed plants may serve as alternative sources of inoculum for Fomg, during the growing season.  相似文献   

14.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

15.
Fusarium oxysporum f. sp. conglutinans (FOC) causes Fusarium wilt, a disease of cabbage that has brought about significant economic loss throughout northern China since it was first detected in 2001. To characterize the Chinese FOC isolates, we compared the cultural characteristics, pathogenicity and races between the Chinese isolates and the type strains (race 1: 52,557 and race 2: 58,385). The Chinese FGL‐03‐6 isolate had cultural characteristics similar to those of strain 52,557, including colony growth rate, colony and spore characteristics and responses to temperature changes, while the strain 58,385 grew faster, produced more pigment and spores and was more adaptable to temperature fluctuations. The lethal temperature for all strains was 60°C, and the optimal temperatures for pathogen growth on potato dextrose agar and pathogenicity on plants were 25°C and 25 to 30°C, respectively. Tests for race and pathogenicity indicated that different cabbage cultivars had similar resistance reactions to FGL‐03‐6 and 52,557. However, the pathogenicity of FGL‐03‐6 was similar to that of 58,385, which infected quickly and caused more severe disease symptoms. This study further provides information regarding characterizing different strains of F. oxysporum f. sp. conglutinans.  相似文献   

16.
The options for managing Fusarium wilt in greenhouse cucumbers are limited by our poor understanding of the modes of survival and dissemination of the pathogen. This study uses a specific quantitative real‐time PCR assay for Fusarium oxysporum f. sp. cucumerinum to investigate the significance of flying insects as aerial vectors of the pathogen in a commercial cucumber greenhouse. Shore flies were more frequently detected (35.5%) carrying F. oxysporum f. sp. cucumerinum than sciarids (25%), with both species carrying between 1 × 102 and 1 × 106 pathogen genome copies/individual. Sciarid and shore flies acquired F. oxysporum f. sp. cucumerinum following exposures to agar cultures of the pathogen of up to 94 h. Light microscopy revealed that spores were carried externally on the bodies of the adult flies. The ability of adult sciarid flies to vector the pathogen from peat‐grown diseased cucumber plants and infect healthy cucumber plants was demonstrated in a caged glasshouse trial. An inoculum density trial showed that vascular wilt disease was initiated after inoculation of peat‐grown seedlings with as few as 1000 conidia. We conclude that sciarid and shore flies play significant roles as vectors of F. oxysporum f. sp. cucumerinum in greenhouse cucumbers and need to be recognized in developing integrated crop management strategies.  相似文献   

17.
A rapid tomato seedling assay was developed for determining the relative wilt capacity of isolates of Fusarium oxysporum f. sp. radicis-lyco-persici (FORL), a virulent strain of the tomato pathogen. The procedures for the assay require that 5-day-old cv. Bonny Best tomato seedlings be dipped in 30-day cell-free concentrated culture filtrates of FORL isolates, which were grown in Czapek-Dox medium with 2% Bacto-casamino acids (CDA). The seedlings in the culture filtrates were then incubated at 30 C under artificial light (1200 ftcandles) at 28% relative humidity in a wind stream of 100–150 m min. The relative pathogenicity of the isolates was determined by inoculating the roots of 18-day-old seedlings with cultures of FORL isolates. The pattern of cell-free filtrate wilt among the isolates was the same as that for the disease caused by cultures of the isolates. The seedlings treated with the filtrate from the most virulent isolate (Harrow HRS-182) wilted in 20 min. The filtrates from less virulent isolates took progressively longer. up to 90 min. to cause comparable wilt. Isolate HRS-082 was the first isolate also to induce disease in 10-day-old seedling assay. Both assays indicate three levels of wilt and disease capacities amongthe isolates examined. The utility of the assay in research and breeding for resistance is discussed.  相似文献   

18.
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is an important disease of tomato. Pathogenicity and vegetative compatibility tests, although reliable, are laborious for the identification of FOL isolates and cannot efficiently quantify population densities of FOL in the soil. The objective of this study was to develop a rapid, sensitive and quantitative real‐time polymerase chain reaction (PCR) assay for detecting and quantifying FOL in soil. An inexpensive and relatively simple method for soil DNA extraction and purification was developed based on bead‐beating and a silica‐based DNA‐binding method. A TaqMan probe and PCR primers were designed using the DNA sequence of the species‐specific virulence gene SIX1, which is only present in isolates of FOL, not in isolates of other formae speciales or non‐pathogenic isolates of F. oxysporum. The real‐time PCR assay successfully amplified isolates of three races of FOL used in this study and quantified FOL DNA in soils, with a detection limit of 0.44 pg of genomic DNA of FOL in 20 μl of the real‐time PCR. A spiking test performed by adding different concentrations of conidia to soil showed a significant linear relationship between the amount of genomic DNA of FOL detected by the real‐time PCR assay and the concentration of conidia added. In addition, the real‐time PCR assay revealed a significant quadratic regression for a glasshouse experiment between disease severity and DNA concentration of FOL. The soil DNA extraction method and real‐time PCR assay developed in this study could be used to determine population densities of FOL in soil, develop threshold models to predict Fusarium wilt severity, identify high‐risk fields and measure the impact of cultural practices on FOL populations in soils.  相似文献   

19.

Background  

Fusarium oxysporum f. sp. lycopersici is the causal agent of vascular wilt disease in tomato. In order to gain more insight into the molecular processes in F. oxysporum necessary for pathogenesis and to uncover the genes involved, we used Agrobacterium-mediated insertional mutagenesis to generate 10,290 transformants and screened the transformants for loss or reduction of pathogenicity.  相似文献   

20.
Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and β-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and β-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号