首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T4 DNA topoisomerase is a type II enzyme and is thought to be required for normal T4 DNA replication T4 gene 39 codes for the largest of the three subunits of T4 DNA topoisomerase. I have determined the nucleotide sequence of a region of 2568 nucleotides of T4 DNA which includes gene 39. The location of the gene was established by the identification of the first fifteen amino acids in the large open reading frame in the DNA sequence as those found at the amino-terminus of the purified 39-protein. The coding region of gene 39 has 1560 bases, and it is followed by two in-frame stop codons. The gene is preceded by a typical Shine-Dalgarno sequence as well as possible promoter sequences for E. coli RNA polymerase. T4 39-protein consists of 520 amino acids, and it has a calculated molecular weight of 58,478. By comparing the amino acid sequences, T4 39-protein is found to share homology with the gyrB subunit of DNA gyrase. This suggests that these topoisomerase subunits may be equivalent functionally. Some of the characteristics of the 39-protein and its structural features predicted from the DNA sequence data are discussed.  相似文献   

2.
T Uemura  K Morikawa    M Yanagida 《The EMBO journal》1986,5(9):2355-2361
We have determined the complete nucleotide sequence of a 5.3-kb long genomic DNA fragment of the fission yeast Schizosaccharomyces pombe that encodes DNA topoisomerase II. It contains a 4293 bp long single open reading frame. The predicted polypeptide has 1431 residues (mol. wt 162,000) and shows three characteristic domains; the large C-terminal region, which consists of alternating acidic-basic stretches and might be a chromatin-binding domain, the NH2 half domain homologous to the ATP-binding gyrB subunit of bacterial gyrase and the central-to-latter part which is homologous to the NH2 domain of the catalytic gyrA subunit, suggesting a possible evolutionary consequence of the gene fusion of the bacterial gyrase subunits into the eucaryotic DNA topoisomerase II gene. We have found that the cloned fission yeast TOP2 gene can complement the budding yeast top2 mutation, although the fission yeast TOP2 protein sequence is only 50% homologous to the recently determined sequence of budding yeast (J.C. Wang, personal communication). Conversely, the budding yeast TOP2 gene can complement the fission yeast top2 mutations, indicating that their DNA topoisomerase II genes are functionally exchangeable.  相似文献   

3.
The gene gyrA of Escherichia coli, which encodes the A subunit of DNA gyrase (topoisomerase II), has been cloned and a region of approximately 3300 base-pairs sequenced. An open reading frame of 2625 nucleotides coding for a protein of 97,000 Mr is located. The peptide weight of the subunit predicted from this open reading frame is in close agreement with previously published estimates of that of the A subunit. There is a "TATAAT" promoter motif located 44 bases upstream from the first "ATG" of the open reading frame. The amino acid sequence derived from the nucleotide sequence is about 50% homologous with that derived from the Bacillus subtilis gyrA gene sequence, with several regions showing greater than 90% homology.  相似文献   

4.
A DNA consensus sequence for topoisomerase II cleavage sites was derived previously based on a statistical analysis of the nucleotide sequences around 16 sites that can be efficiently cleaved by Drosophila topoisomerase II (Sander, M., and Hsieh, T. (1985) Nucleic Acids Res. 13, 1057-1072). A synthetic 21-mer DNA sequence containing this cleavage consensus sequence was cloned into a plasmid vector, and DNA topoisomerase II can cleave this sequence at the position predicted by the cleavage consensus sequence. DNase I footprint analysis showed that topoisomerase II can protect a region of approximately 25 nucleotides in both strands of the duplex DNA, with the cleavage site located near the center of the protected region. Similar correlation between the DNase I footprints and strong topoisomerase II cleavage sites has been observed in the intergenic region of the divergent HSP70 genes. This analysis therefore suggests that the strong DNA cleavage sites of Drosophila topoisomerase II likely correspond to specific DNA-binding sites of this enzyme. Furthermore, the extent of DNA contacts made by this enzyme suggests that eucaryotic topoisomerase II, in contrast to bacterial DNA bacterial DNA gyrase, cannot form a complex with extensive DNA wrapping around the enzyme. The absence of DNA wrapping is probably the mechanistic basis for the lack of DNA supercoiling action for eucaryotic topoisomerase II.  相似文献   

5.
《Gene》1996,174(1):121-128
We have cloned and sequenced two overlapping DNA fragments (3236 bp) containing a gene encoding the ATPase subunit of a type II DNA topoisomerase from the hyperthermophilic bacterion Thermotoga maritima (Tm Top2B). The deduced protein is composed of 636 aa with a calculated molecular mass of 72 415 Da. It shares significant similarities with the ATPase subunits of mesophilic bacterial DNA topoisomerases II, either DNA gyrase (GyrB) or DNA topoisomerase IV (ParE). Although the highest similarity scores are obtained with GyrB proteins (55% identity with Bacillus subtilis DNA gyrase), a detailed phylogenetic analysis of all known DNA topoisomerases II does not allow us to determine if Tm Top2B corresponds to a DNA gyrase or a DNA topoisomerase IV. This hyperthermophilic Top2B protein exhibits a larger amount of charged amino acids than its mesophilic homologues, a feature which could be important for its thermostability. No gyrA-like gene has been found near top2B. A gene coding for a transaminase B-like protein was found in the upstream region of top2B.  相似文献   

6.
T4 gene 52 encodes one of the three subunits of T4 DNA topoisomerase. The T4 enzyme is required for normal phage DNA replication. I have cloned the entire gene, and it is expressed in uninfected E. coli cells. The sequence of 1966 nucleotides of T4 deletion delta sa9 surrounding gene 52 has been determined. The reading frame of the gene was established by identifying the first ten amino acids in the large open reading frame derived from the DNA sequence as those at the amino-terminus of the purified 52-protein. Based on the DNA sequence, 52-protein has 441 amino acids and a calculated peptide molecular weight of 50,583 daltons. This T4 topoisomerase subunit shares significant amino acid sequence homology with the gyrA subunit of bacterial gyrases and the carboxyl-half of yeast topoisomerase II in spite of the large differences in their sizes, confirming their functional equivalence in type II enzyme directed DNA topoisomerization. Amino acid sequence homology is highest in the amino-terminal portions of the equivalent peptides. The homology alignment suggests a consensus sequence organization surrounding the reactive tyrosine which is used to form the transient protein-DNA intermediate in the double-stranded DNA passing reaction. The delta sa9 deletion in T4 brings gene 52 to a location 30 nucleotides 3' from the rIIB gene whose C-terminal 167 codons are also reported here.  相似文献   

7.
The partial amino acid sequence of p140 calf thymus DNA topoisomerase II was determined by analysis of cyanogen bromide peptides. Five peptides were aligned and shared extensive homology with sequences derived from cDNA clones for the human topoisomerase II isoenzyme forms. Less homology was seen with the Drosophila, yeast and bacterial type II enzymes. Calf and human enzymes shared epitopes allowing isolation of a cDNA clone to human topoisomerase II isoenzyme alpha. Our results indicate that calf thymus p140 topoisomerase II is an active N-terminal proteolytic fragment of the native p180 enzyme and demonstrate that mammalian type II enzymes exhibit close sequence similarity.  相似文献   

8.
Thirteen of the first fifteen amino acids from the NH2-terminus of the primary sequence of human cytochrome c oxidase subunit I and eleven of the first twelve amino acids of subunit II have been identified by microsequencing procedures. These sequences have been compared with the recently determined 5'-end proximal sequences of the HeLa cell mitochondrial mRNAs and unambiguously aligned with two of them. This alignment has allowed the identification of the putative mRNA for subunit I, and has shown that the initiator codon for this subunit is only three nucleotides away from the 5'-end of its mRNA; furthermore, the results have substantiated the idea that the translation of human cytochrome c oxidase subunit II starts directly at the 5'-end of its putative mRNA, as had been previously inferred on the basis of the sequence homology of human mitochondrial DNA with the primary sequences of the bovine subunit.  相似文献   

9.
10.
11.
The amino acid sequences of the C-terminal domain (CTD) of the type II DNA topoisomerases are divergent and species specific as compared with the highly conserved N-terminal and central domains. A set of C-terminal deletion mutants of Leishmania donovani topoisomerase II was constructed. Removal of more than 178 amino acids out of 1236 amino acid residues from the C-terminus inactivates the enzyme, whereas removal of 118 amino acids or less has no apparent effect on the ability of the parasite enzyme to complement a temperature-sensitive mutation of the Saccharomyces cerevisiae topoisomerase II gene. Deletion analysis revealed a potent nuclear localization signal (NLS) within the amino acid residues 998–1058. Immunomicroscopy results suggest that the removal of an NLS in the CTD is likely to contribute to the physiological dysfunction of these proteins. Modeling of the LdTOP2 based on the crystal structure of the yeast type II DNA topoisomerase showed that the parasite protein assumes a structure similar to its yeast counterpart harboring all the conserved residues in a structurally similar position. However, a marked difference in electrostatic potential was found in a span of 60 amino acid residues (998–1058), which also do not have any homology with topoisomerase II sequences. Such significant differences can be exploited by the structure-based design of selective inhibitors using the structure of the Leishmania enzyme as a template.  相似文献   

12.
Cleavage of DNA by mammalian DNA topoisomerase II   总被引:46,自引:0,他引:46  
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.  相似文献   

13.
The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones.  相似文献   

14.
The nucleotide sequence of a DNA gyrase B subunit gene (gyrB) from Treponema pallidum has been determined. Southern blot analysis of T. pallidum chromosomal DNA indicated that this gene is present as a single copy. The organization of genes flanking the gyrB gene is unique in comparison to that of other bacteria. The gyrB gene encodes a 637 amino acid protein whose deduced sequence has a high degree of homology with type-II topoisomerase ATPase subunits (GyrB and ParE). Five type-II topoisomerase motifs, an ATP-binding site (Walker A), and amino acid residues that putatively interact with ATP, are highly conserved in the T. pallidum GyrB protein.  相似文献   

15.
We have isolated and sequenced overlapping cDNA clones from a breast carcinoma cDNA library containing the entire coding region of both the R1 and R2 subunits of the human ribonucleotide reductase gene. The coding region of the human R1 subunit comprises 2376 nucleotides and predicts a polypeptide of 792 amino acids (calculated molecular mass 90,081). The sequence of this subunit is almost identical to the equivalent mouse ribonucleotide reductase subunit with 97.7% homology between the mouse and human R1 subunit amino acid sequences. The coding region of the human R2 subunit of ribonucleotide reductase comprises 1170 nucleotides and predicts a polypeptide of 389 amino acids (calculated molecular mass 44,883), which is one amino acid shorter than the equivalent mouse subunit. The human and mouse R2 subunits display considerable homology in their carboxy-terminal amino acid sequences, with 96.3% homology downstream of amino acid 68 of the human and mouse R2 proteins. However, the amino-terminal portions of these two proteins are more divergent in sequence, with only 69.2% homology in the first 68 amino acids.  相似文献   

16.
AIM: We performed experiments to isolate DNA topoisomerase II gene from Pleurotus ostereatus and to discuss its application as a feasible and credible molecular maker in phylogenitic analysis. METHODS AND RESULTS: A fragment of PosTopII was amplified from a P. ostreatus cDNA clone by nested polymerase chain reaction (PCR), using degenerate primers and primer walking. The full-length gene sequence was obtained with 3' and 5'-full RACE-PCR. The PosTopII cDNA is 4808 bp length and contains an open reading frame (ORF) of 4713 bp. The predicted peptide has 1571 amino acids, and exhibits strong sequence homology to other eukaryotic topoisomerase II. The PosTopII sequence was compared with the homologous genes to determine it can be used as a reliable molecular maker for P. ostreatus. CONCLUSIONS: The complete sequence of PosTopII cDNA clone was obtained. The phylogenetic relationships were consistent with other classification methods based on the morpological characteristics and rDNA gene sequences. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on isolation of a DNA topoisomerse II from P. ostreatus. Findings from this study indicate that the DNA topoisomers II can be applied as a reliable meker for taxonomic distinction in the genus Pleurotus.  相似文献   

17.
W. Thomas  R. M. Spell  M. E. Ming    C. Holm 《Genetics》1991,128(4):703-716
We have undertaken a genetic analysis of heat-sensitive and cold-sensitive mutations in TOP2, the gene encoding yeast DNA topoisomerase II. Deletion mapping was used to localize 14 heat-sensitive and four cold-sensitive top2 mutations created by a method biased toward mutations in the 3' two-thirds of the gene. The mutations all appear to be located in the region of DNA topoisomerase II that shows homology to the "A" subunit of bacterial DNA gyrase. The heat-sensitive mutations and one cold-sensitive mutation lie in the center of the gene near the sequence that encodes the active site tyrosine. The three other cold-sensitive mutations map farther toward the 3' end of the gene. The cold-sensitive mutations exhibit intragenic complementation, and the complementation groups correspond to the physical map. We sequenced nine top2 mutations and found that the mutations are usually single missense mutations, frequently involve proline, and affect conserved regions of the protein. Suppressor analysis yielded two intragenic suppressors and seven independent isolates of an allele-specific extragenic suppressor we named tos1; tos1 is not allelic to any genes predicted to encode type I topoisomerase-related proteins. The two intragenic suppressors were tested for allele-specificity; the results revealed a complex pattern of suppression between heat-sensitive and cold-sensitive top2 alleles. These top2 mutations may have compensatory effects on the general stability of the protein.  相似文献   

18.
Searching the protein sequence database for amino acid sequences homologous to the x-lor sequence in the pX region of human T-cell leukemia virus types I and II (HTLV-I/II), we found that there is a region of 38 amino acids where the murine interleukin 3 (IL-3) sequence has a 40% homology with the x-lor sequence. A statistical analysis shows that this homology is highly significant with a probability of 1.57 X 10(-10). The biological implication of this homology is discussed.  相似文献   

19.
BLAST searches of 61 equine microsatellite sequences revealed two related families of retroposons. The first family included seven markers, all of which showed significant homology to the Equine Repetitive Element-1 (ERE-1) Short Interspersed Nucleotide Element (SINE) sequence. Length of homology ranged from 76 to 171 bases with identities to the ERE-1 consensus sequence ranging from 71% to 83%. The second family referred to as Equine Repetitive Element-2 (ERE-2) has a consensus sequence that showed homology to ERE-1 over approximately 60 bases. These 60 bases comprised subunit I. Sequence comparisons for the two retroposons led to the identification of a subunit II, subunit III, as well as the tRNAser subunit. The subunit structure of ERE-1 was tRNAser-I-II. By contrast, the subunit structure of ERE-2 was I-III-III. The nine markers related to ERE-2 showed homology lengths ranging from 84 to 163 bases with identities ranging from 75% to 99%. In addition to being present in microsatellites, ERE-2 appeared in three separate equine genes. It occurred in an intron of DNA-PK, in an untranslated region as well as in the promoter of PGHS, and in the coding region of PAM. The amino acids corresponding to the ERE-2 sequence in PAM were not present in the human or mouse PAM homologs. These amino acids associated with the ERE-2 sequence were present on the cytosolic side of the transmembrane domain of the PAM enzyme. Microsatellite markers in the ERE-1 and ERE-2 families were found throughout the genus equus and also for rhinoceros, indicating that the appearance of both retroposons predates the divergence of equids from the other perissodactyls. The markers did not amplify in human or bovine DNA. This indicated that ERE-1 and ERE-2 are, at least, perissodactyl specific. Received: 20 July 1998 / Accepted: 29 September 1998  相似文献   

20.
H C Lai  G Grove    C P Tu 《Nucleic acids research》1986,14(15):6101-6114
We have isolated a Yb-subunit cDNA clone from a GSH S-transferase (GST) cDNA library made from rat liver polysomal poly(A) RNAs. Sequence analysis of one of these cDNA, pGTR200, revealed an open reading frame of 218 amino acids of Mr = 25,915. The deduced sequence is in agreement with the 19 NH2-terminal residues for GST-A. The sequence of pGTR200 differs from another Yb cDNA, pGTA/C44 by four nucleotides and two amino acids in the coding region, thus revealing sequence microheterogeneity. The cDNA insert in pGTR200 also contains 36 nucleotides in the 5' noncoding region and a complete 3' noncoding region. The Yb subunit cDNA shares very limited homology with those of the Ya or Yc cDNAs, but has relatively higher sequence homology to the placental subunit Yp clone pGP5. The mRNA of pGTR200 is not expressed abundantly in rat hearts and seminal vesicles. Therefore, the GST subunit sequence of pGTR200 probably represents a basic Yb subunit. Genomic DNA hybridization patterns showed a complexity consistent with having a multigene family for Yb subunits. Comparison of the amino acid sequences of the Ya, Yb, Yc, and Yp subunits revealed significant conservation of amino acids (approximately 29%) throughout the coding sequences. These results indicate that the rat GSTs are products of at least four different genes that may constitute a supergene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号