首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chaperonin containing TCP-1 (CCT, also known as TRiC) is the only member of the chaperonin family found in the cytosol of eukaryotes. Like other chaperonins, it assists the folding of newly synthesised proteins. It is, however, unique in its specificity towards only a small subset of non-native proteins. We determined two crystal structures of mouse CCTgamma apical domain at 2.2 A and 2.8 A resolution. They reveal a surface patch facing the inside of the torus that is highly evolutionarily conserved and specific for the CCTgamma apical domain. This putative substrate-binding region consists of predominantly positively charged side-chains. It suggests that the specificity of this apical domain towards its substrate, partially folded tubulin, is conferred by polar and electrostatic interactions. The site and nature of substrate interaction are thus profoundly different between CCT and its eubacterial homologue GroEL, consistent with their different functions in general versus specific protein folding assistance.  相似文献   

2.
Short cationic antimicrobial peptides (AMPs) are believed to act either by inducing transmembrane pores or disrupting membranes in a detergent-like manner. For example, the antimicrobial peptides aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1, despite being closely related, appear to act by fundamentally different mechanisms depending on their length. Using molecular dynamics simulations, the structural properties of these four peptides have been examined in solution as well as in a variety of membrane environments. It is shown that each of the peptides has a strong preference for binding to regions of high membrane curvature and that the structure of the peptides is dependent on the degree of local curvature. This suggests that the shorter peptides aurein 1.2 and citropin 1.1 act via a detergent-like mechanism because they can induce high local, but not long-range curvature, whereas the longer peptides maculatin 1.1 and caerin 1.1 require longer range curvature to fold and thus bind to and stabilize transmembrane pores.  相似文献   

3.
4.
5.
Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine reactivity toward iodo[2-(14)C]acetic acid and found that the cysteines become more accessible during binding of a cysteine free mutant of HCA II. Spin labeling of GroEL with N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide revealed that this additional binding occurred because buried cysteine residues become accessible during HCA II binding. In addition, a GroEL variant labeled with 6-iodoacetamidofluorescein exhibited decreased fluorescence anisotropy upon HCA II binding, which resembles the effect of GroES/ATP binding. Furthermore, by producing cysteine-modified GroEL with the spin label N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide and the fluorescent label 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid, we detected increases in spin-label mobility and fluorescence intensity in GroEL upon HCA II binding. Together, these results show that conformational changes occur in the chaperonin as a consequence of protein substrate binding. Together with previous results on the unfoldase activity of GroEL, we suggest that the chaperonin opens up as the substrate protein binds. This opening mechanism may induce stretching of the protein, which would account for reported unfoldase activity of GroEL and might explain how GroEL can actively chaperone proteins larger than HCA II.  相似文献   

6.
Cell-free translation of beta-tubulin mRNA generates full length beta-tubulin polypeptides distributed in three molecular forms: a high molecular weight lysate-associated form, the free beta-tubulin subunit, and the alpha beta-heterodimer (Yaffe, M.B., Farr, G. W., and Sternlicht, H. (1988) J. Biol. Chem. 263, 16023-16031). A quantitative assay system for these three forms was developed and used to measure the rates of incorporation/exchange of the newly synthesized free beta-subunit and the high molecular weight form into tubulin heterodimers following incubation of the 35S-translation products with unlabeled bovine tubulin dimer. This exchange process was found to be slow and strongly temperature-dependent. The half-lives for exchange ranged from 12.5 min at 37 degrees C to 17.5 h at 0 degree C with a measured activation energy of 22.5 kcal/mol. Microtubule-associated proteins appeared to play no role in the exchange process, since identical exchange rates were observed regardless of whether microtubule protein or phosphocellulose-purified tubulin was used as the source of tubulin dimer. Surprisingly, the exchange rates were found to be independent of dimer concentration. We interpret these results as evidence for a rate-limiting, slow conformational change that occurs within the newly synthesized beta-subunits prior to their association with alpha-tubulin to generate the alpha beta-hetero-dimer.  相似文献   

7.
8.
A Kamb  J S Finer-Moore  R M Stroud 《Biochemistry》1992,31(51):12876-12884
We have solved crystal structures of two complexes with Escherichia coli thymidylate synthase (TS) bound either to the cofactor analog N10-propargyl-5,8-dideazafolate (CB3717) or to a tighter binding polygutamyl derivative of CB3717. These structures suggest that cofactor binding alone is sufficient to induce the conformational change in TS; dUMP binding is not required. Because polyglutamyl folates are the primary cofactor form in vivo, and because they can bind more tightly than dUMP to TS, these structures may represent a key intermediate along the TS reaction pathway. These structures further suggest that the dUMP binding site is accessible in the TS-cofactor analog binary complexes. Conformational flexibility of the binary complex may permit dUMP to enter the active site of TS while the cofactor is bound. Alternatively, dUMP may enter the active site from the opposite side that the cofactor appears to enter; that is, through a portal flanked by arginines that also coordinate the phosphate group in the active site. Entry of dUMP through this portal may allow dUMP to bind to a TS-cofactor binary complex in which the complex has completed its conformational transition to the catalytically competent structure.  相似文献   

9.
David Poger  Alan E. Mark 《Proteins》2010,78(5):1163-1174
Atomistic molecular dynamics simulations have been used to investigate the conformational changes associated with the binding of human growth hormone (hGH) to the extracellular domains (ECD) of the human growth hormone receptor (hGHR), thereby shedding light on the mechanism of activation. It is shown that the removal of hGH from the hormone‐bound receptor complex results in a counter‐clockwise rotation of the twosubunits relative to each other by 30°–64° (average 45° ± 14°), in close agreement in terms of both the magnitude and direction of the rotation with that proposed based on mutagenesis experiments. In addition to providing evidence to support a rotational activation mechanism, the simulations have enabled the nature of the interaction interfaces in both the cytokine‐bound and unliganded hGHR states to be analyzed in detail. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Lergotrile (0.5 mg/kg, i.p.) lowered blood pressure significantly in spontaneously hypertensive rats. This effect was antagonized by pretreatment with haloperidol, pimozide, or domperidone. In normotensive rats, administration of haloperidol or domperidone rapidly increased serum prolactin levels. Haloperidol also increased striatal levels of dihydroxyphenylacetic acid and homovanillic acid; however, domperidone did not, which confirms that this latter blocker probably acts primarily as a peripheral dopamine antagonist. Taken together, these data suggest that lergotrile lowers blood pressure in hypertensive rats mainly by stimulating peripheral dopamine receptors.  相似文献   

11.
Ran-binding proteins (RanBP) are a group of proteins that bind to Ran (Ras-related nuclear small G-protein) and thus control the GTP/GDP-bound states of the Ran and couple the Ran GTPase cycle to cellular processes. In an effort to identify potential downstream effectors for PsRan1-dependent cellular processes, we detected a group of pea Ran (PsRan1)-binding proteins and characterized their biochemical activities. A Ran overlay assay using [(32)P-GTP]-labeled PsRan1 revealed three PsRan1-binding proteins (33, 45, and 85kDa in size) from total protein extracts of dark-grown pea plumules. These proteins bound preferentially to the Ran-GTP over Ran-GDP conformation and subsequently stabilized its GTP-bound status. We propose that they are a family of proteins that maintain the Ran protein in the active conformation and are potential downstream mediators for PsRan1-dependent cellular processes. Our report provides the basis for characterizing and dissecting Ran downstream targets and Ran-mediated events, and it thus facilitates our understanding about the roles played by Ran/RanBP signaling pathways during plant growth and development.  相似文献   

12.
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization from the cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal transmembrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion (DeltaG degrees x) into lipid vesicles was determined to be -6.5 kcal mol(-1) at pH 4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy-Chapman theory to estimate an electrostatic contribution of DeltaG degrees el approximately -2.5 kcal mol(-1) and a non-electrostatic contribution of DeltaG degrees nel approximately -4.0 kcal mol(-1) to the free energy of insertion, DeltaG degrees x. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed.  相似文献   

13.
The type I interferon (IFN) receptor plays a key role in innate immunity against viral and bacterial infections. Here, we show by intramolecular Förster resonance energy transfer spectroscopy that ligand binding induces substantial conformational changes in the ectodomain of ifnar1 (ifnar1-EC). Binding of IFNα2 and IFNβ induce very similar conformations of ifnar1, which were confirmed by single-particle electron microscopy analysis of the ternary complexes formed by IFNα2 or IFNβ with the two receptor subunits ifnar1-EC and ifnar2-EC. Photo-induced electron-transfer-based fluorescence quenching and single-molecule fluorescence lifetime measurements revealed that the ligand-induced conformational change in the membrane-distal domains of ifnar1-EC is propagated to its membrane-proximal domain, which is not involved in ligand recognition but is essential for signal activation. Temperature-dependent ligand binding studies as well as stopped-flow fluorescence experiments corroborated a multistep conformational change in ifnar1 upon ligand binding. Our results thus suggest that the relatively intricate architecture of the type I IFN receptor complex is designed to propagate the ligand binding event to and possibly even across the membrane by conformational changes.  相似文献   

14.
Single rat lactotroph cells were studied after loading with the cytosolic free Ca2+ concentration ([Ca2+]i) indicator fura-2 either 1 or 3 days after cell dispersion. Under unstimulated conditions, two groups of lactotrophs were observed, the first (predominant at day 1) with large [Ca2+]i fluctuations (peaks up to 300 nM) probably due to spontaneous action potentials and the second (predominant at 3 days) with stable [Ca2+]i (values variable between 65 and 200 nM). The effect of dopamine on the resting [Ca2+]i was different in the two groups. Even at high dopamine concentrations, no change occurred in the second group; whereas in the first, disappearance of fluctuations and marked decrease of [Ca2+]i were observed. These effects of dopamine appear to be due to hyperpolarization that was demonstrated by the use of a specific fluorescent indicator, bis(oxonol). Two types of triggered [Ca2+]i transients were studied in detail: those due to redistribution of Ca2+ from the intracellular stores (induced by thyrotropin-releasing hormone) and those due to Ca2+ influx through voltage-gated Ca2+ channels (induced by high [K+]). Dopamine (1 microM) markedly inhibited both these transients by the action of D2 receptors (blocked by 1-sulpiride and domperidone). All effects of dopamine were prevented by treatment of the cells with pertussis toxin, indicating the involvement of one (or more) GTP-binding protein(s). Another consequence of D2 receptor activation is the inhibition of adenylate cyclase. Treatments (cholera toxin, forskolin), known to raise cAMP levels, were found to dissociate the effects of dopamine on [Ca2+]i inasmuch as they markedly relieved the inhibition of the redistributive transients by thyrotropin-releasing hormone but left hyperpolarization and inhibition of K+ transients unaffected. The spectrum of intracellular signals elicited by the activation of D2 receptors is therefore complex and includes at least two mechanisms that involve [Ca2+]i, one related and the other independent of the decrease of cAMP levels.  相似文献   

15.
16.
17.
The asymmetric distribution of the nucleotide-bound state of Ran across the nuclear envelope is crucial for determining the directionality of nuclear transport. In the nucleus, Ran is primarily in the guanosine 5′-triphosphate (GTP)-bound state, whereas in the cytoplasm, Ran is primarily guanosine 5′-diphosphate (GDP)-bound. Conformational changes within the Ran switch I and switch II loops are thought to modulate its affinity for importin-β. Here, we show that RanGDP and importin-β form a stable complex with a micromolar dissociation constant. This complex can be dissociated by importin-β binding partners such as importin-α. Surprisingly, the crystal structure of the Kap95p-RanGDP complex shows that Kap95p induces the switch I and II regions of RanGDP to adopt a conformation that resembles that of the GTP-bound form. The structure of the complex provides insights into the structural basis for the gradation of affinities regulating nuclear protein transport.  相似文献   

18.
Numerous antitumor and antibacterial agents inhibit type II DNA topoisomerases, yielding, in each case, a complex of enzyme covalently bound to cleaved DNA. We are investigating the mechanism of inhibitor action by using the type II DNA topoisomerase of bacteriophage T4 as a model. The T4 topoisomerase is the target of antitumor agent 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) in T4-infected Escherichia coli. Two m-AMSA-resistant phage strains were previously isolated, one with a point mutation in topoisomerase subunit gene 39 and the other with a point mutation in topoisomerase subunit gene 52. We report here that the wild-type T4 topoisomerase is inhibited by six additional antitumor agents that also inhibit the mammalian type II topoisomerase: ellipticine, 9-OH-ellipticine, 2-me-9-OH-ellipticinium acetate, mitoxantrone diacetate, teniposide, and etoposide. Further, one or both of the m-AMSA-resistance mutations alters the enzyme sensitivity to each of these agents, conferring either cross-resistance or enhanced sensitivity. Finally, the gene 39 mutation confers on T4 topoisomerase a DNA gyrase-like sensitivity to the gyrase inhibitor oxolinic acid, thus establishing a direct link between the mechanism of action of the anti-bacterial quinolones and that of the antitumor agents. These results strongly suggest that diverse inhibitors of type II topoisomerases share a common binding site and a common mechanism of action, both of which are apparently conserved in the evolution of the type II DNA topoisomerases. Alterations in DNA cleavage site specificity caused by either the inhibitors or the m-AMSA-resistance mutations favor the proposal that the inhibitor binding site is composed of both protein and DNA.  相似文献   

19.
Coupled translocation of tRNA and mRNA in the ribosome during protein synthesis is one of the most challenging and intriguing problems in the field of translation. We highlight several key questions regarding the mechanism of translocation, and discuss possible mechanistic models in light of the recent crystal structures of the ribosome and its subunits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号