首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The formation of sulfidic sediments in response to factors such as secondary salinisation and fertiliser usage is an emerging concern for the management of many freshwater wetlands. However, fundamental knowledge regarding the influence of sulfidic sediments on the aquatic biota is still lacking. 2. This study investigated the potential for biota to recolonise wetlands affected by sulfidic sediments, by assessing zooplankton hatching and aquatic plant germination following inundation with freshwater. Sediment samples were collected from 16 wetlands in the southern Murray‐Darling Basin, Australia, that ranged in condition from non‐impacted to possessing a known history of sulfidic sediments and/or acidification. 3. Principal Components Analysis indicated that the wetlands separated out into five different groups based on their sediment chemistry: non‐impacted, sulfidic, sulfidic and highly saline (sediment EC 46 800–209 000 μS cm?1), sulfidic and potentially acidic (sediment pH 5.81–6.45 and ANC 0.07–0.31% CaCO3), and sulfidic and acidic (sediment pH 4.37 and ANC 0.00% CaCO3). 4. A viable dormant propagule bank was present in all wetlands, but the taxon richness of zooplankton and aquatic plants was significantly lower in wetlands affected by sulfidic sediments compared with those that were non‐affected. 5. This suggests that zooplankton and aquatic plants will be capable of recolonising wetlands that have accumulated sulfidic sediments via their propagule banks if the appropriate remediation measures are undertaken, although the communities developing are likely to be less diverse compared with those in non‐affected wetlands.  相似文献   

2.
Summary   The presence of sulfidic sediments (potential acid sulfate soils) is an emerging problem in the management of inland wetlands. Using data from 81 wetlands in the Murray-Darling Basin, a simple protocol was developed to assess whether a wetland will contain sulfidic sediments at levels that could cause ecological damage. Risk factors include whether or not the wetland receives municipal waste or irrigation return water, elevated salinity in the overlying water (>1750 µS/cm) or sediment (400 µS/cm in a 1:5 soil : water extract) and high levels of sulfate in the water column (>10 mg/L). Neutral or basic sediment pH indicates that, even if the sediment does contain sulfidic sediments, there is a reduced likelihood of acidification if the sediments are oxidized.  相似文献   

3.
The chemical composition during baseflow was used to elucidate the fundamental processes controlling longitudinal and seasonal patterns of stream acidity in Yellow Creek, a chronically acidic headwater (pH range 3.7--4.2) on the Appalachian Plateau in northeastern West Virginia. Sulfate concentrations controlled the variability of stream acidity within the Yellow Creek catchment. Decreases in stream free H+ acidity with decreasing elevation likely resulted from SO 4 2– retention in riparian wetland areas as well as spatial variation in dominant tree species. Seasonal variations in free H+ and inorganic monomeric aluminum (Aln+) concentrations appeared related to seasonal fluctuations in baseflow discharge which was controlled by vegetative activity. Baseflow stream discharge, as well as H+ and Aln+ acidity, gradually declined during the growing season (June through October), likely reflecting microbial SO 4 2– > reduction in saturated anaerobic environments within riparian wetlands. A marked pulse of stream H+, Aln+, and SO 4 2– coincided with an abrupt increase in baseflow discharge resulting from the cessation of transpiration after leaf-fall in November. This seasonal pattern suggests that autumn may be a critical period for eastern brook trout in streams draining wetlands on the Appalachian Plateau.  相似文献   

4.
Agricultural land use changes differentially affect soil fertility and crop production potential of wetlands. We studied East African wetlands with contrasting hydro-geological characteristics (high- and lowland floodplains and valley swamps). Land uses ranged from no use and grazing over crop production in flooded and drained fields to abandonment. We classified the dynamics of wetlands’ conversion into agricultural sites and assessed selected soil fertility attributes associated with land use changes, and their effect on the crop production potential in aerobic and anaerobic soils. A conversion of pristine wetlands, differing in soil physical and chemical attributes, into sites of production tended to negatively affect soil total C and N. Effects were stronger with soil drainage and in the coarse-textured soils of the lowland floodplain and the mid-hill valleys. Mineral P application in drained valleys significantly increased available soil P. Crop response followed these patterns with usually higher biomass accumulation and nutrient uptake in flooded than aerobic soils. Wetlands of fine soil texture in the highlands appeared more resilient than coarse-textured soils, particularly when drained. Enhanced crop performance in flooded soils indicates the possibility for partial recovery of the production potential and the rehabilitation of some wetlands.  相似文献   

5.
Drainage is a major disturbance affecting wetlands, as drains lower water tables and convert lentic habitats to lotic ones. Consequently, invertebrate communities in drained wetlands are likely to differ from those in unimpacted wetlands. This study investigated the effect of hydrological restoration on invertebrate communities in small drains in a New Zealand fen. Invertebrates were collected over 4 summers from 10 drains within the wetland, one of which was blocked as part of a restoration program. The sampling protocol thus represented a Before‐After Control‐Impact experiment. Invertebrate community composition varied over the 4 years, but variability was greatest in the manipulated drain before and after it was blocked. Relative abundance of the amphipod Paraleptamphopus decreased after blockage, whereas those of the midges Chironomus zelandicus and Tanypodinae increased. Relative abundances of these taxa in control sites were unchanged. Hydraulic restoration thus had a demonstrable impact on the invertebrate communities. The invertebrate community of the blocked drain was compared to that of natural wetlands in undisturbed catchments. Similarity was very low prior to drain blockage, but increased following drain blockage. Invertebrate communities in the restored drain were more similar to those of low pH wetlands than high pH wetlands. Given the goal of restoring the communities to those similar to natural conditions, this was a beneficial result. These results, coupled with studies that showed a decline in the cover of alien pasture grasses around the blocked drain, suggest that drain blockage represents a cost‐effective way of restoring wetland plant and aquatic invertebrate communities, especially where connectivity allows for the natural recruitment of these organisms into restored areas.  相似文献   

6.
Large rivers of the tropics, many of which have extensive floodplains and deltas, are important in the delivery of nutrients and sediments to marine environments, in methane emission to the atmosphere and in providing ecosystem services associated with their high biological productivity. These ecosystem functions entail biogeochemical processes that will be influenced by climate change. Evidence for recent climate-driven changes in tropical rivers exists, but remains equivocal. Model projections suggest substantial future climate-driven changes, but they also underscore the complex interactions that control landscape water balances, river discharges and biogeochemical processes. The most important changes are likely to involve: (1) aquatic thermal regimes, with implications for thermal optima of plants and animals, rates of microbially mediated biogeochemical transformations, density stratification of water bodies and dissolved oxygen depletion; (2) hydrological regimes of discharge and floodplain inundation, which determine the ecological structure and function of rivers and floodplains and the extent and seasonality of aquatic environments; and (3) freshwater–seawater gradients where rivers meet oceans, affecting the distribution of marine, brackish and freshwater environments and the biogeochemical processing as river water approaches the coastal zone. In all cases, climate change affects biogeochemical processes in concert with other drivers such as deforestation and other land use changes, dams and other hydrological alterations and water withdrawals. Furthermore, changes in riverine hydrology and biogeochemistry produce potential feedbacks to climate involving biogeochemical processes such as decomposition and methane emission. Future research should seek improved understanding of these changes, and long-term monitoring should be extended to shallow waters of wetlands and floodplains in addition to the larger lakes and rivers that are most studied.  相似文献   

7.
Louisiana has had a high rate of coastal wetland loss due mainly to the isolation of the Mississippi River from the deltaic plain. We conducted a feasibility analysis of using once-through, non-contact industrial cooling water for restoring subsiding forested wetlands in coastal Louisiana. We considered the impacts of heated water and high nutrient and sediment concentrations. River diversions introduce sediments and nutrients to stimulate the productivity and accretion of coastal wetlands. Since increases in sediments and nutrients can cause water quality problems, we analyzed the assimilative capacity of the swamp. Based on a loading rates analysis, we estimated that the following nutrient reductions would occur: 75% for NO3, 50% for TN, 60–75% for TP, and 100% for suspended sediments. Because of the concern of impacts from heated water, it is likely that the temperature of the cooling water will have to be decreased before discharge. Altering the duration and location of the discharge are ways to minimize the impact of temperature. We recommend that a pilot study be carried out to determine the effects of heated water on the functioning of the system, the retention of sediments and nutrients, and the impacts of different discharge scenarios.  相似文献   

8.
In natural systems, the chemistry of floodplain waters is a function of the source of the water, which is influenced by geomorphic features of riparian wetlands. However, anthropogenic disturbances may alter both geomorphic features and the natural balance of water mixing in the floodplain. The aim of this study was to classify riparian wetlands and characterize their water characteristics in one reach of the Middle Ebro River to assess the hydrochemical functioning of the system. In order to accomplish that goal, water samples were collected at 40 sampling sites during low-water conditions and two floods of different magnitude. Moreover, geomorphic characteristics of riparian wetlands were also analyzed to interpret the results at broader spatio-temporal scales. Three group of wetlands were identified using multivariate ordination: (1) major and secondary channels highly connected to the river by surface water, containing weakly ionized water with high nitrate levels during floods; (2) secondary channels and artificial ponds located in riparian forests near the river, most of which were affected by river seepage during the examined events. This type of sites had high major ions concentrations and elevated spatial variability with respect to nutrient concentrations during floods; (3) Siltated oxbow lakes, whose hydrogeochemical features seemed to be unaffected by factors related to river fluctuations. Total dissolved solids, major ion (sulfate, chloride, sodium, calcium, magnesium, and potassium) and nutrient (nitrate, ammonium and organic nitrogen, and phosphate) depended upon the relationships between surface and subsurface water flows. Seasonal changes and geomorphic characterization indicated that a strong functional dependence of floodplain wetlands close to the main river channel is established, whereas most of the floodplain area remains disconnected from river dynamics. Moreover, the effect of nitrate-enriched agricultural runoff seems to affect water quality and hydrochemical gradients of the system. Based on our results, we propose different types of actions for the management of the Ebro River flow to ensure a more natural ecological functioning of its floodplains. Handling editor: P. Viaroli  相似文献   

9.
Coastal wetlands have the capacity to retain and denitrify large quantities of reactive nitrogen (N), making them important in attenuating increased anthropogenic N flux to coastal ecosystems. The ability of coastal wetlands to retain and transform N is being reduced by wetland losses resulting from land development. Nitrogen retention in coastal wetlands is further threatened by the increasing frequency and spatial extent of saltwater inundation in historically freshwater ecosystems, due to the combined effects of dredging, declining river discharge to coastal areas due to human water use, increased drought frequency, and accelerating sea‐level rise. Because saltwater incursion may affect N cycling through multiple mechanisms, the impacts of salinization on coastal freshwater wetland N retention and transformation are not well understood. Here, we show that repeated annual saltwater incursion during late summer droughts in the coastal plain of North Carolina changed N export from organic to inorganic forms and led to a doubling of annual NH4+ export from a 440 hectare former agricultural field undergoing wetland restoration. Soil solution NH4+ concentrations in two mature wetlands also increased with salinization, but the magnitude of increase was smaller than that in the former agricultural field. Long‐term saltwater exposure experiments with intact soil columns demonstrated that much of the increase in reactive N released could be explained by exchange of salt cations with sediment NH4+. Using these findings together with the predicted flooding of 1661 km2 of wetlands along the NC coast by 2100, we estimate that saltwater incursion into these coastal areas could release up to 18 077 Mg N, or approximately half the annual NH4+ flux of the Mississippi River. Our results suggest that saltwater incursion into coastal freshwater wetlands globally could lead to increased N loading to sensitive coastal waters.  相似文献   

10.
Agricultural use of wetlands: opportunities and limitations   总被引:3,自引:0,他引:3  

Background

Wetlands are species-rich habitats performing valuable ecosystem services such as flood protection, water quality enhancement, food chain support and carbon sequestration. Worldwide, wetlands have been drained to convert them into agricultural land or industrial and urban areas. A realistic estimate is that 50 % of the world''s wetlands have been lost.

Scope

This paper reviews the relationship between wetlands and agriculture with the aim to identify the successes and failures of agricultural use in different types of wetlands, with reference to short-term and long-term benefits and issues of sustainability. It also addresses a number of recent developments which will lead to pressure to reclaim and destroy natural wetlands, i.e. the continuous need for higher production to feed an increasing world population and the increasing cultivation of energy crops. Finally, attention is paid to the development of more flood-tolerant crop cultivars.

Conclusions

Agriculture has been carried out in several types of (former) wetlands for millennia, with crop fields on river floodplain soils and rice fields as major examples. However, intensive agricultural use of drained/reclaimed peatlands has been shown to lead to major problems because of the oxidation and subsidence of the peat soil. This does not only lead to severe carbon dioxide emissions, but also results in low-lying land which needs to be protected against flooding. Developments in South-East Asia, where vast areas of tropical peatlands are being converted into oil palm plantations, are of great concern in this respect. Although more flood-tolerant cultivars of commercial crop species are being developed, these are certainly not suitable for cultivation in wetlands with prolonged flooding periods, but rather will survive relatively short periods of waterlogging in normally improved agricultural soils. From a sustainability perspective, reclamation of peatlands for agriculture should be strongly discouraged. The opportunities for agriculture in naturally functioning floodplains should be further investigated. The development and use of crop cultivars with an even stronger flood tolerance could form part of the sustainable use of such floodplain systems. Extensive use of wetlands without drastic reclamation measures and without fertilizer and pesticides might result in combinations of food production with other wetland services, with biodiversity remaining more or less intact. There is a need for research by agronomists and environmental scientists to optimize such solutions.Key words: Wetlands, sustainable agriculture, peat subsidence, floodplains, rice fields, water use, irrigation  相似文献   

11.
疏浚泥用于滨海湿地生态工程现状及在我国应用潜力   总被引:6,自引:0,他引:6  
黄华梅  高杨  王银霞  娄全胜  谢健 《生态学报》2012,32(8):2571-2580
疏浚泥传统的海上倾倒方式现已成为海洋的主要污染来源,而将疏浚泥应用到滨海湿地生态工程具有重要的价值和意义。疏浚泥应用于滨海湿地生态工程在国外的系统研究超过40a,工程运用已有上百年的历史。综述了海洋疏浚泥运用于滨海湿地生态工程的研究前沿和工程运用现状,同时分析其典型的生态工程案例,以期为我国的技术推广提供参考。疏浚泥用于生态工程用途主要有:(1)生态保育下沉和侵蚀性海岸湿地:人为补给疏浚泥可以补偿因高程降低或者海岸侵蚀带来的负面影响,国际上通常采用疏浚泥薄层覆盖法。(2)生态修复受损的滨海湿地:疏浚泥作为基质恢复和重建其潮间带生境,修复因围垦等人类活动严重受损的湿地,从而恢复湿地植被群落;(3)建造人工生态岛:将疏浚泥堆置于便利处,形成自然疏浚泥岛,按照不同的设计高程创造出不同的生境,随着自然的演替,岛屿演替成为生物多样性高和生境丰富的岛屿。以国际上的疏浚泥生态工程运用为借鉴,结合目前我国海洋经济发展的现状和滨海湿地面临的一系列挑战,分析疏浚泥在我国滨海湿地生态重建和生态修复等工程方面的应用前景,为缓解我国海洋产业经济发展和滨海湿地生态环境保护之间的矛盾提供技术借鉴。  相似文献   

12.
Wetlands of the Amazon River basin are globally significant sources of atmospheric methane. Satellite remote sensing (passive and active microwave) of the temporally varying extent of inundation and vegetation was combined with field measurements to calculate regional rates of methane emission for Amazonian wetlands. Monthly inundation areas for the fringing floodplains of the mainstem Solimões/Amazon River were derived from analysis of the 37 GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer from 1979 to 1987. L‐band synthetic aperture radar data (Japanese Earth Resources Satellite‐1) were used to determine inundation and wetland vegetation for the Amazon basin (<500 m elevation) at high (May–June 1996) and low water (October 1995). An extensive set of measurements of methane emission is available from the literature for the fringing floodplains of the central Amazon, segregated into open water, flooded forest and floating macrophyte habitats. Uncertainties in the regional emission rates were determined by Monte Carlo error analyses that combined error estimates for the measurements of emission and for calculations of inundation and habitat areas. The mainstem Solimões/Amazon floodplain (54–70°W) emitted methane at a mean annual rate of 1.3 Tg C yr?1, with a standard deviation (SD) of the mean of 0.3 Tg C yr?1; 67% of this range in uncertainty is owed to the range in rates of methane emission and 33% is owed to uncertainty in the areal estimates of inundation and vegetative cover. Methane emission from a 1.77 million square kilometers area in the central basin had a mean of 6.8 Tg C yr?1 with a SD of 1.3 Tg C yr?1. If extrapolated to the whole basin below the 500 m contour, approximately 22 Tg C yr?1 is emitted; this mean flux has a greenhouse warming potential of about 0.5 Pg C as CO2. Improvement of these regional estimates will require many more field measurements of methane emission, further examination of remotely sensed data for types of wetlands not represented in the central basin, and process‐based models of methane production and emission.  相似文献   

13.
Rising dissolved organic carbon (DOC) concentrations observed at a number of sites in the northern hemisphere over recent decades are the subject of much debate, and recent reports suggest a link between DOC patterns in surface waters and changes in sulphate (SO4) related to droughts or deposition. In order to investigate the potential influence of changes in SO4 concentration on DOC patterns in south‐central Ontario, we used long‐term (1980–2001) stream monitoring data from a wetland‐dominated catchment (Plastic Lake‐1 subcatchment, PC1) that has been the focus of intensive investigations of both SO4 and DOC dynamics. Annual average volume‐weighted DOC concentration increased significantly between 1980 and 2001, whereas SO4 concentration declined, but the decrease was not significant due to large increases in SO4 that occurred during drought years. There was no relationship between SO4 and DOC in annual data series; however, seasonal analyses indicated significant negative correlations between SO4 and DOC concentrations in spring (March–April–May), summer (June–July–August) and fall (September–October–November). In spring, DOC concentration was negatively correlated with flow whereas SO4 concentrations increased with flow, and their opposing relationships with discharge explain the negative correlation between SO4 and DOC in this season. In summer and fall, low SO4 concentrations occur during periods of low flow as a result of microbial SO4 reduction, whereas correspondingly high DOC concentrations in the summer and fall can be attributed to optimal conditions (i.e. stagnant flow, warm temperatures) for DOC production in the wetland. Increases in SO4 (and acidity) following droughts were not associated with declines in DOC; instead the primary impact of droughts on DOC was to limit DOC export due to diminished stream flow. Rather than an acidification effect, we suggest that negative relationships between SO4 and DOC were either directly (spring) or indirectly (summer/fall) caused by underlying relationships with hydrology.  相似文献   

14.
Currently 177 vascular plant species are known or presumed to be obligately associated with water in Peru. Their composition and diversity were surveyed in relationship to their distributions among the natural regions of Peru. Despite considerable aridity, the coastal plains of Peru have important aquatic ecosystems, including marshes in river deltas and mangroves in the far north, near the border with Ecuador; 70 species of aquatic plants are found in this coastal region. The Andean highlands include a great variety of wetlands, plus lakes and rivers; 62 species are found, including eight species of Isoetes, some of which are potentially threatened by extinction. The Amazon region of Peru includes both steep montane rivers in the headwaters and wide floodplains formed by meandering rivers in the lowlands; 102 species are found distributed among these ecosystems, although many additional species are semi-aquatic. Research and conservation strategies for Peru's aquatic plants need to take into account these important regional differences.  相似文献   

15.
Small-sized and juvenile fishes as well as physicochemical water parameters in various primary, secondary and rarely flooded temporary floodplains of the Okavango Delta were assessed during the different hydrological phases of the 2009–2010 flooding season. Small fishes were sampled in the marginal zone of the floodplains using a throw-trap net and a suite of physicochemical properties were measured. Both physicochemical water quality parameters and densities of small fishes showed spatiotemporal variations across the temporary floodplain types. Turbidity, dissolved oxygen, conductivity, woody debris and chlorophyll a were all highest in rarely flooded floodplains compared to both primary and secondary floodplains (ANOVA, p < 0.05). Fish from 38 fish taxa belonging to 11 families were identified and classified during the study. The fish families Cichlidae (dominated by tilapias), Poeciliidae (Aplocheilichthys spp.) and Cyprinidae (Barbus spp.), were the most abundant across the study floodplains. The poeciliids were most abundant in frequently flooded primary and secondary floodplains, whereas juvenile cichlids dominated in rarely flooded floodplains. During high floods the rarely flooded portions of the delta function as important nursery habitats for juvenile cichlids, implying that a significant reduction in flooding may have negative effects on the delta's tilapia stocks due to reduced recruitment success.  相似文献   

16.
Installation of feral pig (Sus scrofa) exclusion fences to conserve and rehabilitate coastal floodplain habitat for fish production and water quality services remains untested. Twenty‐one floodplain and riverine wetlands in the Archer River catchment (north Queensland) were surveyed during postwet (June–August) and late‐dry season (November–December) in 2016, 2017, and 2018, using a fyke net soaked overnight (~14–15 hr) to test: (a) whether the fish assemblage are similar in wetlands with and without fences; and (b) whether specific environmental conditions influence fish composition between fenced and unfenced wetlands. A total of 6,353 fish representing twenty‐six species from 15 families were captured. There were no wetland differences in fish assemblages across seasons, years and for fenced and unfenced (PERMANOVA, Pseudo‐F < 0.589, p < .84). Interestingly, the late‐dry season fish were far smaller compared to postwet season fish: a strategy presumably in place to maximize rapid disposal following rain and floodplain connectivity. In each wetland, a calibrated Hydrolab was deployed (between 2 and4 days, with 20 min logging) in the epilimnion (0.2 m) and revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH (conductivity represented freshwater wetlands), which was more obvious in the late‐dry season survey because of extreme summer conditions. Water quality varied among wetlands in terms of the daily amplitude and extent of daily photosynthesis recovery, which highlights the need to consider local conditions and that applying general assumptions around water quality conditions for these types of wetlands is problematic for managers. Though many fish access wetlands during wet season connection, the seasonal effect of reduced water level conditions seems more overimprovised when compared to whether fences are installed, as all wetlands supported few, juvenile, or no fish species because they had dried completely regardless of the presence of fences.  相似文献   

17.
江姗  赵光影  臧淑英  邵宗仁 《生态学报》2017,37(5):1401-1408
选取不同排水年限的兴安落叶松人工林湿地(1974年排水、1985年排水、1992年排水、2003年排水)和天然森林沼泽湿地(兴安落叶松沼泽湿地)为研究对象,探讨排水对小兴安岭森林沼泽湿地土壤溶解性有机碳(DOC)和有效氮磷的影响。结果表明,天然沼泽排水后,在土壤垂直剖面上,不同排水年限的森林湿地与天然沼泽湿地的土壤溶解性有机碳含量均呈递减变化。与天然森林沼泽湿地相比,排水湿地各土层DOC含量均显著低于天然沼泽湿地(P0.05)。天然森林沼泽,表层(0—10 cm)的土壤SOC含量、DOC/SOC、土壤有效氮含量均大于排水森林沼泽,但是有效磷含量却低于排水森林沼泽(P0.05)。在土壤表层(0—10 cm),排水年限与DOC、SOC、DOC/SOC、土壤有效氮呈显著性负相关,与有效磷呈显著性正相关(P0.05)。天然沼泽排水后,表层(0—10 cm)土壤的DOC含量与有效氮(铵态氮、硝态氮)含量成正比,与有效磷含量成反比(P0.05)。  相似文献   

18.
To provide a reference for wetlands elsewhere we analysed soil nutrients and the vegetation of floodplains and fens in the relatively undisturbed Biebrza-valley, Poland. Additionally, by studying sites along a water-table gradient, and by comparing pairs of mown and unmown sites, we aimed with exploring long-term effects of drainage and annual hay-removal on nutrient availabilities and vegetation response. In undrained fens and floodplains, N mineralization went slowly (0–30 kg N ha−1 year−1) but it increased strongly with decreasing water table (up to 120 kg N ha−1 year−1). Soil N, P and K pools were small in the undisturbed mires. Drainage had caused a shift from fen to meadow species and the disappearance of bryophytes. Biomass of vascular plants increased with increasing N mineralization and soil P. Annual hay-removal tended to have reduced N mineralization and soil K pools, but it had increased soil P. Moreover, N concentrations in vascular plants were not affected, but P and K concentrations and therefore N:P and N:K ratios tended to be changed. Annual hay-removal had induced a shift from P to K limitation in the severely drained fen, and from P to N limitation in the floodplain. The low nutrient availabilities and productivity of the undisturbed Biebrza mires illustrate the vulnerability of such mires to eutrophication in Poland and elsewhere. In nutrient-enriched areas, hay removal may prevent productivity increase of the vegetation, but also may severely alter N:P:K stoichiometry, induce K-limitation at drained sites, and alter vegetation structure and composition.  相似文献   

19.
Book reviews   总被引:12,自引:1,他引:11  
Kang  Hojeong  Freeman  Chris  Lee  Dowon  Mitsch  William J. 《Hydrobiologia》1998,368(1-3):231-235
Wetlands have been widely applied for water quality amelioration. Enzymatic analysis was applied in a study of decomposition in constructed wetlands. We hypothesise that soil enzyme activities would be lower in wetland sediment than adjacent upland and that the lower soil enzyme activities are partly responsible for the water quality amelioration. Four soil enzyme activities (β-glucosidase, β-N-acetylglucosaminidase, phosphatase, and arylsulfatase) and microbial activity (electron transport system activity) were measured across a transect from a upland soil to a wetland sediment in two constructed wetland sites in the USA. Along with the activities, hydrochemistry was determined in inflow and outflow of the wetlands. In both wetlands, the enzyme activities in the sediments were significantly lower than the adjacent upland soils. For hydrochemistry, significant decreases were observed in phosphate and nitrate concentrations in outflow water compared to inflow water. However, there were no significant changes in other anions (F-, Cl-, SO 4 2- . For dissolved organic carbon, it seems that the wetlands would be a source rather than a sink. The results suggest that the enzymatic approach represents a valuable method to assess decomposition processes in wetland sediments, and that characteristically low enzyme activities in the sediments may be important in the water quality amelioration function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号