首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The objective of the present work was to describe an aerobic, mesophilic and heterotrophic marine bacterium, designated HYD657, able to produce an exopolysaccharide (EPS). It was isolated from a East Pacific Rise deep-sea hydrothermal vent polychaete annelid. METHODS AND RESULTS: This micro-organism, on the basis of the phenotypical features and genotypic investigations, can be clearly assigned to the Alteromonas macleodii species and the name A. macleodii subsp. fijiensis biovar deepsane is proposed. Optimal growth occurs between 30 and 35 degrees C, at pH between 6.5 and 7.5 and at ionic strengths between 20 and 40 g x l(-1) NaCl. The G + C content of DNA was 46.5%. This bacterium excreted, under laboratory conditions, an EPS consisting of glucose, galactose, rhamnose, fucose and mannose as neutral sugars along with glucuronic and galacturonic acids and a diacidic hexose identified as a 3-0-(1 carboxyethyl)-D-glucuronic acid. Its average molecular mass was 1.6 x 10(6) Da. CONCLUSIONS: The bacterium HYD657, for which the name A. macleodii subsp. fijiensis biovar deepsane is proposed, produces an unusual EPS in specific medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to its interesting biological activities, applications have been found in cosmetics. Its probable contribution to the filamentous microbial mat in the Alvinella pompejana microenvironment can be also mentioned.  相似文献   

2.
A deep-sea, aerobic, mesophilic and heterotrophic new bacterium was isolated from a sample of fluid collected among a dense population of Riftia pachyptila , in the vicinity of an active hydrothermal vent of the Southern depression of the Guaymas basin (Gulf of California). On the basis of phenotypic and phylogenetic analyses and DNA/DNA relatedness, the strain GY785 was recognized as a new species of the genus Alteromonas and the name of Alteromonas infernus is proposed. During the stationary phase in batch cultures in the presence of glucose, this bacterium secreted two unusual polysaccharides. The water-soluble exopolysaccharide-1 produced xrcontained glucose, galactose, galacturonic and glucuronic acids as monosaccharides. The gel-forming exopolysaccharide-2 was separated from the bacterial cells by dialysis against distilled water and partially characterized.  相似文献   

3.
Aims:  The objective of the present work was to describe a new deep-sea, aerobic, mesophilic and heterotrophic bacterium, referenced as strain AT1214, able to produce polyhydroxyalkanoates (PHAs) under laboratory conditions. This bacterium was isolated from a shrimp collected nearby a hydrothermal vent located on the Mid-Atlantic Ridge. Methods and Results:  This micro-organism, on the basis of the phenotypical features and genotypic investigations, can be clearly assigned to the Halomonas genus and the name of Halomonas profundus is proposed. Optimal growth occurred between 32 and 37°C at a pH between 8 and 9 and at ionic strength between 20 and 30 g l−1 of sea salts. The G + C content of DNA was 58·6%. This bacterium produced PHAs of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Conclusions:  The bacterium H. profundus produces PHA of 3HB and 3HV monomers from different carbon sources. Significance and Impact of the Study:  PHAs share physical and material properties that suggest them for application in various areas, and are considered as an alternative to nonbiodegradable plastics produced from fossil oils. In this study, we describe a new bacteria isolated from a deep-sea hydrothermal vent with the capability to produce polyesters of biotechnological interest.  相似文献   

4.
A novel barophilic, extremely thermophilic bacterium was isolated from a deep-sea hydrothermal vent chimney at the Iheya Basin, in the Okinawa area, Japan. The cells were found to be rod shaped and surrounded by a sheath-like outer structure; the organism did not possess flagella and was not motile. Growth was observed between 45° and 80°C (optimum, 72°C, 45 min doubling time), pH 5.3 and 9.3 (optimum, pH 7.2–7.6), 6.6 and 79 g/l sea salts (optimum, 40 g/l), and 0.1 and 60 MPa (optimum, 20 MPa). Strain IHB1 was found to be a strictly anaerobic chemoorganotroph capable of utilizing yeast extract and proteinaceous substrates such as peptone and tryptone. Elemental sulfur or thiosulfate acted as electron acceptors improving growth. The isolate was able to utilize casein as a sole carbon and energy source in the presence of thiosulfate. The G + C content of the genomic DNA was 31.4 mol%. Phylogenetic analysis based on 16S rDNA sequences and DNA–DNA hybridization analysis indicated that the isolate is closely related to Thermosipho africanus; however, it represents a species distinct from the previously described members of the genus Thermosipho. On the basis of the physiological and molecular properties, we propose that the new isolate represents a new species, which we name Thermosipho japonicus sp. nov. (type strain: IHB1; JCM10495). Received: May 26, 1999 / Accepted: August 7, 1999  相似文献   

5.
A deep-sea, mesophilic, aerobic, and heterotrophic microorganism, able to produce an extracellular polysaccharide, was isolated from a shrimp collected near an active hydrothermal vent of the Mid-Atlantic Ridge. On the basis of phenotypic and phylogenetic analyses and DNA/DNA relatedness, this strain could be assigned to the species Alteromonas macleodii as a variant of the fijiensis subspecies. It was selected for its ability to exhibit a swarming mucoid phenotype on specific media. The bacterium secreted, under laboratory conditions, an extremely viscous exopolysaccharide consisting of glucose, galactose as neutral sugars, and glucuronic, galacturonic acids as uronic acids, along with pyruvate and acetate as main substituents.  相似文献   

6.
Thermovibrio ammonificans type strain HB-1T is a thermophilic (Topt: 75°C), strictly anaerobic, chemolithoautotrophic bacterium that was isolated from an active, high temperature deep-sea hydrothermal vent on the East Pacific Rise. This organism grows on mineral salts medium in the presence of CO2/H2, using NO3- or S0 as electron acceptors, which are reduced to ammonium or hydrogen sulfide, respectively. T. ammonificans is one of only three species within the genus Thermovibrio, a member of the family Desulfurobacteriaceae, and it forms a deep branch within the phylum Aquificae. Here we report the main features of the genome of T. ammonificans strain HB-1T (DSM 15698T).  相似文献   

7.
Photochemically active pigment-protein complexes were prepared from a bacteriochlorophyll a containing membrane preparation of the green photosynthetic bacterium Prosthecochloris aestuarii. The preparations contained about 75 and 35 bacteriochlorophyll a molecules per reaction center and had molecular weights of 6 . 10(5) and 3.5 . 10(5), respectively. Some of the other properties of these preparations are described.  相似文献   

8.
A lambda-carrageenan-degrading Pseudoalteromonas bacterium, strain CL19, was isolated from a deep-sea sediment sample. A lambda-carrageenase from the isolate was purified to homogeneity from cultures containing lambda-carrageenan as a carbon source. This is the first report of the isolation of lambda-carrageenase together with the gene sequence for the enzyme. The molecular mass of the purified enzyme was approximately 100 kDa on both SDS-PAGE and gel-filtration chromatography, suggesting that the enzyme is a monomer. The optimal pH and temperature for activity were about 7 and 35 degrees C, respectively. The enzyme had specific activity of 253 U/mg protein. The enzyme required monovalent salts for the activity. Carbohydrates, such as sorbitol, sucrose, trehalose, improved the enzyme stability. The pattern of lambda-carrageenan hydrolysis showed that the enzyme is an endo-type lambda-carrageenase, and the final main product was a tetrasaccharide of the lambda-carrageenan ideal structure with galactose 2,6-disulfate at the reducing end, indicating the enzyme cleaves the beta-1,4 linkages of its backbone structure. Furthermore, the gene (cglA) encoding the enzyme was sequenced. It encoded a mature protein of 103 kDa (917 amino acids). Remarkably, the deduced amino acid sequence showed no similarity to any reported proteins.  相似文献   

9.
A novel coccoid-shaped, hyperthermophilic, anaerobic archaeon, strain RG-20, was isolated from a deep-sea hydrothermal vent fluid sample taken at 1394-m depth at the Mid-Okinawa Trough (27°32.7′N, 126°58.5′E). Cells of this isolate occur singly or in pairs and are about 0.8 to 2 μm in diameter. Growth was observed at temperatures between 50° and 93°C, with an optimum at 85°C. The pH range for growth is 5.0–9.0, with an optimum around 7.0. Strain RG-20 requires 1%–4% of NaCl for growth, and cell lysis occurs at concentrations below 1%. The newly isolated strain grows preferentially in the presence of elemental sulfur on proteinaceous substrates such as yeast extract, peptone, or tryptone, and no growth was observed on carbohydrates, carboxylic acids, alcohols, or lipids. This microorganism is resistant to streptomycin, chloramphenicol, ampicillin, and kanamycin at concentrations up to 150 μg/ml, but is susceptible to rifampicin. Analysis of the hydrolyzed core lipids by thin-layer chromatography (TLC) revealed the presence of archaeol and caldarchaeol. The mol% G+C content of the DNA is 55.8. Partial sequencing of the 16S rDNA indicates that strain RG-20 belongs to the genus Thermococcus. Considering these data and on the basis of the results from DNA-DNA hybridization studies, we propose that this strain should be classified as a new species named Thermococcus siculi (si′cu.li. L. gen. n. siculi, of the deep-sea [siculum, deep-sea in literature of Ovid], referring to the location of the sample site, a deep-sea hydrothermal vent). The type strain is isolate RG-20 (DSM No. 12349). Received: May 11, 1998 / Accepted: July 24, 1998  相似文献   

10.
Free-radical depolymerization with metallic catalysts has been investigated to depolymerize an exopolysaccharide (EPS), with a high molecular weight (>106 g/mol), produced by the bacterium Alteromonas macleodii subsp. fijiensis biovar deepsane. Three metals (copper, zinc and manganese) were used either alone or mixed. These metals led to the depolymerization of the high molecular weight bacterial polysaccharide with different efficiency. This study specifies some conditions required to produce, with good reproducibility and yield, EPS derivatives of reduced molecular weight ranging from 100,000 to 20,000 g/mol. The more influential parameters are specified. This is a first study to find suitable industrial conditions in the presence of these metallic catalysts.  相似文献   

11.
The structure of the exopolysaccharide produced under laboratory conditions by Vibrio diabolicus, a bacterium recovered from a deep-sea hydrothermal vent, has been investigated using sugar and methylation analysis and NMR spectroscopy. The polysaccharide consists of a linear tetrasaccharide repeating unit with the following structure. -->3)-beta-D-Glcp Nac-(1-->4)-beta-D-Glcp A-(1-->4)-beta-D-Glcp A-(1-->4)-alpha-D-Galp NAc-(1-->  相似文献   

12.
13.
From a hydrothermal vent site off the Mexican west coast (20°50′N, 109°06′W) at a depth of 2,600 m, a novel, hyperthermophilic, anaerobic archaeum was isolated. Cells were round to slightly irregular cocci, 1.2–2.5 μm in diameter and were motile by means of a tuft of flagella. The new isolate grew between 60 and 93°C (optimum: 85°C), from pH 3.5 to 9 (optimum: pH 6.7), and from 0.8 to 8% NaCl (optimum: 2%). The isolate was an obligate organotroph, using chitin, yeast extract, meat extract, and peptone for growth. Chitin was fermented to H2, CO2, NH3, acetate, and formate. H2S was formed in the presence of sulfur. The chitinoclastic enzyme system was oxygen-stable, cell-associated, and inducible by chitin. The cell wall was composed of a surface layer of hex- americ protein complexes arranged on a p6 lattice. The core lipids consisted of glycerol diphytanyl diethers and acyclic and cyclic glycerol diphytanyl tetraethers. The G+C content was 46.5 mol%. DNA/DNA hybridization and 16S rRNA sequencing indicated that the new isolate belongs to the genus Thermococcus, representing a new species, Thermococcus chitonophagus. The type strain is isolate GC74, DSM 10152. Received: 8 May 1995 / Accepted: 26 June 1995  相似文献   

14.
Since deep-sea hydrothermal vent fluids are enriched with toxic metals, it was hypothesized that (i) the biota in the vicinity of a vent is adapted to life in the presence of toxic metals and (ii) metal toxicity is modulated by the steep physical-chemical gradients that occur when anoxic, hot fluids are mixed with cold oxygenated seawater. We collected bacterial biomass at different distances from a diffuse flow vent at 9 degrees N on the East Pacific Rise and tested these hypotheses by examining the effect of mercuric mercury [Hg(II)] on vent bacteria. Four of six moderate thermophiles, most of which were vent isolates belonging to the genus Alcanivorax, and six of eight mesophiles from the vent plume were resistant to >10 microM Hg(II) and reduced it to elemental mercury [Hg(0)]. However, four psychrophiles that were isolated from a nearby inactive sulfide structure were Hg(II) sensitive. A neighbor-joining tree constructed from the deduced amino acids of a PCR-amplified fragment of merA, the gene encoding the mercuric reductase (MR), showed that sequences obtained from the vent moderate thermophiles formed a unique cluster (bootstrap value, 100) in the MR phylogenetic tree, which expanded the known diversity of this locus. The temperature optimum for Hg(II) reduction by resting cells and MR activity in crude cell extracts of a vent moderate thermophile corresponded to its optimal growth temperature, 45 degrees C. However, the optimal temperature for activity of the MR encoded by transposon Tn501 was found to be 55 to 65 degrees C, suggesting that, in spite of its original isolation from a mesophile, this MR is a thermophilic enzyme that may represent a relic of early evolution in high-temperature environments. Results showing that there is enrichment of Hg(II) resistance among vent bacteria suggest that these bacteria have an ecological role in mercury detoxification in the vent environment and, together with the thermophilicity of MR, point to geothermal environments as a likely niche for the evolution of bacterial mercury resistance.  相似文献   

15.
H.J.M. Kramer  H. Kingma  T. Swarthoff  J. Amesz 《BBA》1982,681(3):359-364
Excitation spectra were measured at 4 K of bacteriochlorophyll a fluorescence in reaction center containing pigment-protein complexes obtained from the green photosynthetic bacterium Prosthecochloris aestuarii. Excitation spectra for the longest-wave emission (838 nm) showed bands of bacteriochlorophyll a, carotenoid, and of a pigment with absorption bands at 670, 438 and possibly near 420 nm, which is probably identical to an unidentified porphyrin described in the preceding paper (Swarthoff, T., Kramer, H.J.M. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 354–358). At room temperature the longest-wave emission is stimulated by a magnetic field, which indicates that at least part of the emission is delayed fluorescence brought about by a reversal of the primary charge separation. Below about 150 K no stimulation was observed. The excitation spectra for short-wave emission (828 nm) were very similar to the absorption spectrum of the isolated antenna bacteriochlorophyll a-protein complex, and showed bands of bacteriochlorophyll a only. This indicates that two forms of the antenna protein exist that are spectroscopically similar: a soluble form that is released by treatment with guanidine hydrochloride and a bound form that remains attached to the reaction center complex. The bands of the antenna complexes were weak in the excitation spectra of the 838 nm fluorescence, which indicates that the efficiency of energy transfer to the reaction center complex is low.  相似文献   

16.
A novel obligately chemolithotrophic Thiobacillus species isolated from a deep-sea hydrothermal vent is described. This organism grows lithoautotrophically on thiosulphate, tetrathionate, sulphide and sulphur which are oxidized to sulphate. The isolate is slightly halophilic and markedly halotolerant, showing optimum growth at pH 7.5 and at 35°C. The G+C content of the DNA is 67.1 mol%. The 16S rRNA sequence is distinct from any other Thiobacilli sequences. Phylogenetic analysis shows the organism to be a representative of the -group of proteobacteria and a specific relative of Thiobacillus neapolitanus. The ubiquinone is ubiquinone-8. These characters distinguish the isolate from any other Thiobacillus or Thiomicrospira species previously reported and is a new species described as Thiobacillus hydrothermalis. The type strain is isolate R3, DSM7121.  相似文献   

17.
The structure of the exopolysaccharide produced by Pseudoalteromonas reference strain HYD 721 recovered from a deep-sea hydrothermal vent has been investigated. By means of methylation and beta-elimination analysis, selective degradation of the uronic acids, partial depolymerization and NMR studies, the repeating unit of the polymer was deduced to be a branched octasaccharide with the structure shown. [formula: see text]  相似文献   

18.
Wang X  Gao Z  Xu X  Ruan L 《Journal of bacteriology》2011,193(19):5544-5545
Thermococcus sp. strain 4557 is a hyperthermophilic anaerobic archaeon isolated from the deep-sea hydrothermal vent Guaymas Basin site in the Gulf of California at a depth of 2,000 m. Here, we present the complete genome sequence of Thermococcus sp. 4557, which consists of a single circular chromosome of 2,011,320 bp with a G+C content of 56.08%.  相似文献   

19.
Lee HS  Bae SS  Kim MS  Kwon KK  Kang SG  Lee JH 《Journal of bacteriology》2011,193(14):3666-3667
Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent sample, is a novel marine hyperthermophilic archaeon that grows optimally at 93 °C. The complete genome sequence of the strain contains all the genes for the tricarboxylic acid cycle except for succinate dehydrogenase/fumarate reductase, but the genome does not encode proteins involved in polysaccharide utilization.  相似文献   

20.
Two novel, thermophilic piezophiles, capable of chemolithoautotrophic growth, are successfully cultivated and isolated from a black smoker chimney at the TAG field (Mid Atlantic Ridge: MAR) by using a piezophilic cultivation technique. Both strains (strains 106 and 108) represent dominant cultivated populations of the microbial communities in the chimney surface habitat. Strain 106 represents typically thin, long spiral cells under the piezophilic growth condition but short bent cells under the non-piezophilic condition. It is a strictly chemolithoautotrophic gammaproteobacterium using reduced sulfur compounds as the electron donors, and nitrate and O2 as the electron acceptors. Based on the 16S rRNA gene sequence, strain 106 would represent a novel genus of the previously uncultivated group (Symbiont Group I; a potentially novel family) within the Gammaproteobacteria , and ' Thioprofundum lithotrophica ' gen. nov., sp. nov. is proposed. Strain 108 is a short, oval rod at any of the growth pressures. It is a facultative chemoautotroph, capable of both chemolithoautotrophic growth with H2 and S oxidations and organotrophic growth with complex organics or organic acids using nitrate and O2 as the electron acceptors. The chemolithoautotrophic growth is strictly piezophilic and under the organotrophic growth condition, it grows at conventional pressures (0.1 MPa). Strain 108 is phylogenetically distinctive from any of the previously described genera of the family Rhodobacteraceae within the Alphaproteobacteria , and ' Piezobacter thermophilus ' gen. nov., sp. nov. is proposed. The piezophilic cultivation technique can be a powerful tool to isolate and characterize the previously uncultivated phylotypes in the deep-sea hydrothermal vent environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号