首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p46(Shc) and p52(Shc) become heavily tyrosine phosphorylated in response to interleukin 3 (IL-3) treatment. We have investigated the potential of Shc to integrate IL-3 signalling pathways and demonstrate that Shc associates with the beta subunits of the human (betac) and murine (Aic2A) IL-3 receptors, SHIP and Gab2 following IL-3 stimulation. The interaction between Shc and the IL-3 receptor beta chains was direct, mediated by both the SH2 and PTB domains. Interaction with SHIP was via the Shc PTB domain and the Shc SH2 domain mediated the interaction with Gab2. Phosphopeptide competition studies suggest that the SH2 domain interacts primarily with tyrosine 612 of betac (610 of Aic2A), and the PTB domain with tyrosine 577 of betac (575 of Aic2A). PTB binding to IL-3R beta chains was of highest affinity, and appeared to play the primary role in binding. These findings suggest that Shc may play an important role in coordinately integrating IL-3 signalling pathways.  相似文献   

2.
A major Grb2-associated binder-1 (Gab1) binding partner in epidermal growth factor (EGF)-stimulated cells is protein-tyrosine phosphatase (PTPase) SHP2, which contains tandem SH2 domains. The SHP2 PTPase activity is required for activation of the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinase by EGF. To investigate the mechanism by which Gab1 and SHP2 mediate ERK activation, we characterized the Gab1-SHP2 interaction. We found that both Tyr-627 and Tyr-659 of Gab1 were required for SHP2 binding to Gab1 and for ERK2 activation by EGF. Far Western blot analysis suggested that the tandem SH2 domains of SHP2 bind to Gab1 in a specific orientation, in which the N-SH2 domain binds to phosphotyrosine (Tyr(P))-627 and the C-SH2 domain binds to Tyr(P)-659. When assayed with peptide substrates, SHP2 PTPase was activated by a bisphosphopeptide containing both Tyr(P)-627 and Tyr(P)-659, but not by monophosphopeptides containing Tyr(P)-627 or Tyr(P)-659 or a mixture of these monophosphopeptides. These results suggest that Tyr(P)-627 and Tyr(P)-659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) that binds and activates SHP2. Remarkably, while a constitutively active SHP2 (SHP2DeltaN) could not rescue the defect of a SHP2-binding defective Gab1 (Gab1FF) in ERK2 activation, expression of a Gab1FF-SHP2DeltaN chimera resulted in constitutive activation of ERK2 in transfected cells. Thus, physical association of activated SHP2 with Gab1 is necessary and sufficient to mediate the ERK mitogen-activated protein kinase activation. Phosphopeptides derived from Gab1 were dephosphorylated by active SHP2 in vitro. Consistently, substrate-trapping experiments with a SHP2 catalytic inactive mutant suggested that Gab1 was a SHP2 PTPase substrate in the cells. Therefore, Gab1 not only is a SHP2 activator but also is a target of its PTPase.  相似文献   

3.
SHP2 was recently found to down-regulate PI3K activation by dephosphorylating Gab1 but the mechanisms explaining the positive role of the Gab1/SHP2 pathway in EGF-induced Ras activation remain ill defined. Substrate trapping experiments now suggest that SHP2 dephosphorylates other Gab1 phosphotyrosines located within a central region displaying four YXXP motifs. Because these sites are potential docking motifs for Ras-GAP, we tested whether SHP2 dephosphorylates them to facilitate Ras activation. We observed that a Gab1 construct preventing SHP2 recruitment promoted membrane relocation of RasGAP. Moreover, a RasGAP-inactive mutant restored the activation of Ras in cells transfected with SHP2-inactivating Gab1 mutant or in SHP2-deficient fibroblasts, supporting the hypothesis that RasGAP is a downstream target of SHP2. To determine whether Gab1 is a RasGAP-binding partner, a Gab1 mutant deleted of four YXXP motifs was produced. The deletion suppressed RasGAP redistribution and restored the defective Ras activation caused by SHP2-inactivating mutations. Moreover, Gab1 was found to interact with RasGAP SH2 domains, only under conditions where SHP2 is not activated. To identify Ras-GAP-binding sites, Tyr to Phe mutants of Gab1 YXXP motifs were produced. Gab1 constructs mutated on Tyr(317) were severely affected in RasGAP binding and were the most active in compensating for Ras-defective activation and blocking RasGAP redistribution induced by SHP2 inactivation. We have thus localized on Gab1 a Ras-negative regulatory tyrosine phosphorylation site involved in RasGAP binding and showed that an important SHP2 function is to down-regulate its phosphorylation to disengage RasGAP and sustain Ras activation.  相似文献   

4.
THEMIS is critical for conventional T‐cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr‐phosphorylation‐independent fashion. Rather, SHP1 and THEMIS engage with the N‐SH3 and C‐SH3 domains of GRB2, respectively, a configuration that allows GRB2‐SH2 to recruit the complex onto LAT. Consistent with THEMIS‐mediated recruitment of SHP to the TCR signalosome, THEMIS knock‐down increased TCR‐induced CD3‐ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock‐down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK‐mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T‐cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T‐cell development and differentiation.  相似文献   

5.
We have demonstrated previously that class I(A) phosphoinositide 3-kinases play a major role in regulation of interleukin-3 (IL)-3-dependent proliferation. Investigations into the downstream targets involved have identified the MAPK cascade as a target. Expression of Deltap85 and incubation with LY294002 both inhibited IL-3-induced activation of Mek, Erk1, and Erk2. This was most pronounced during the initial phase of Erk activation. The Mek inhibitor, PD98059, blocked IL-3-driven proliferation, an effect enhanced by Deltap85 expression, suggesting that inhibition of Mek and Erks by Deltap85 contributes to the decrease in IL-3-induced proliferation in these cells but that additional pathways may also be involved. To investigate the mechanism leading to decreased activation of Erks, we investigated effects on SHP2 and Gab2, both implicated in IL-3 regulation of Erk activation. Expression of Deltap85 led to a reduction in SHP2 tyrosine phosphorylation and its ability to interact with Grb2 and Gab2 but increased overall tyrosine phosphorylation of Gab2. LY294002 did not perturb SHP2 interactions, potentially related to differences in the effects of these inhibitors on levels of phosphoinositides. These results imply that the regulation of Erks by class I(A) phosphoinositide 3-kinase may contribute to IL-3-driven proliferation and that both SHP2 and Gab2 are possibly involved in this regulation.  相似文献   

6.
Grb2-associated binder-1 (Gab1) is a docking protein closely related to insulin receptor substrates. We previously reported that tyrosine 1062 in RET receptor tyrosine kinase activated by glial cell line-derived neurotrophic factor (GDNF) represents a binding site for the Shc-Grb2-Gab1 complex, and that the p85 subunit of phosphatidylinositol 3-kinase (PI3K) and SHP2 tyrosine phosphatase is associated with Gab1 in GDNF-treated cells. In the present study, we further analyzed the physiological roles of Gab1 downstream of RET, using Gab1 mutants that lack the binding sites for PI3K (Gab1 PI3K-m) or SHP-2 (Gab1 SHP2-m). Expression of Gab1 PI3K-m in SK-N-MC human primitive neuroectodermal tumor cells expressing wild-type RET markedly impaired Akt phosphorylation, Rac1 activation, and lamellipodia formation that were induced by GDNF whereas expression of Gab1 SHP2-m partially impaired Erk activation. Furthermore, expression of Gab1 PI3K-m, but not Gab1 SHP2-m, in TT human medullary thyroid carcinoma cells expressing RET with a multiple endocrine neoplasia 2A mutation enhanced cytochrome c release, and apoptosis induced by etoposide, suggesting that PI3K is involved in survival of TT cells via a mitochondrial pathway. These findings demonstrated that coupling of Gab1 to PI3K is important for biological responses in RET-expressing cells.  相似文献   

7.
B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.  相似文献   

8.
Gab1-SHP2 association is required for Erk mitogen-activated protein kinase activation by several growth factors. Gab1-SHP2 interaction activates SHP2. However, an activated SHP2 still needs to associate with Gab1 to mediate Erk activation. It was unclear whether SHP2 is required to dephosphorylate a negative phosphorylation site on Gab1 or whether SHP2 needs the Gab1 pleckstrin homology (PH) domain to target it to the plasma membrane. We found that expression of a fusion protein consisting of the Gab1 PH domain and an active SHP2 (Gab1PH-SHP2DeltaN) induced constitutive Mek1 and Erk2 activation. Linking the active SHP2DeltaN to the PDK1 PH domain or the FRS2beta myristoylation sequence also induced Mek1 activation. Mek1 activation by Gab1PH-SHP2DeltaN was inhibited by an Src inhibitor and by Csk. Significantly, Gab1PH-SHP2DeltaN induced Src activation. Gab1PH-SHP2DeltaN expression activated Ras, and the Gab1PH-SHP2DeltaN-induced Mek1 activation was blocked by RasN17. These findings suggest that Gab1PH-SHP2DeltaN activated a signaling step upstream of Src and Ras. The SHP2 tyrosine phosphatase activity is essential for the function of the fusion protein. Together, these data show that the Gab1 sequence, besides the PH domain and SHP2 binding sites, is dispensable for Erk activation, suggesting that the primary role of Gab1 association with an activated SHP2 is to target it to the membrane.  相似文献   

9.
Interleukin-6 is involved in the regulation of many biological activities such as gene expression, cell proliferation, and differentiation. The control of the termination of cytokine signaling is as important as the regulation of initiation of signal transduction pathways. Three families of proteins involved in the down-regulation of cytokine signaling have been described recently: (i) SH2 domain-containing protein-tyrosine phosphatases (SHP), (ii) suppressors of cytokine signaling (SOCS), and (iii) protein inhibitors of activated STATs (PIAS). We have analyzed the interplay of two inhibitors in the signal transduction pathway of interleukin-6 and demonstrate that the tyrosine phosphatase SHP2 and SOCS3 do not act independently but are functionally linked. The activation of one inhibitor modulates the activity of the other; Inhibition of SHP2 activation leads to increased SOCS3-mRNA levels, whereas increased expression of SOCS3 results in a reduction of SHP2 phosphorylation after activation of the interleukin-6 signal transduction pathway. Furthermore, we show that tyrosine 759 in gp130 is essential for both SHP2 and SOCS3 but not for SOCS1 to exert their inhibitory activities on interleukin-6 signal transduction. Besides SHP2, SOCS3 also interacts with the Tyr(P)-759 peptide of gp130. Taken together, our results suggest differences in the function of SOCS1 and SOCS3 and a link between SHP2 and SOCS3.  相似文献   

10.
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.  相似文献   

11.
Grb2-associated binder 1 (Gab1) coordinates various receptor tyrosine kinase signaling pathways. Although skeletal muscle differentiation is regulated by some growth factors, it remains elusive whether Gab1 coordinates myogenic signals. Here, we examined the molecular mechanism of insulin-like growth factor-I (IGF-I)-mediated myogenic differentiation, focusing on Gab1 and its downstream signaling. Gab1 underwent tyrosine phosphorylation and subsequent complex formation with protein-tyrosine phosphatase SHP2 upon IGF-I stimulation in C2C12 myoblasts. On the other hand, Gab1 constitutively associated with phosphatidylinositol 3-kinase regulatory subunit p85. To delineate the role of Gab1 in IGF-I-dependent signaling, we examined the effect of adenovirus-mediated forced expression of wild-type Gab1 (Gab1(WT)), mutated Gab1 that is unable to bind SHP2 (Gab1(DeltaSHP2)), or mutated Gab1 that is unable to bind p85 (Gab1(Deltap85)), on the differentiation of C2C12 myoblasts. IGF-I-induced myogenic differentiation was enhanced in myoblasts overexpressing Gab1(DeltaSHP2), but inhibited in those overexpressing either Gab1(WT) or Gab1(Deltap85). Conversely, IGF-I-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation was significantly repressed in myoblasts overexpressing Gab1(DeltaSHP2) but enhanced in those overexpressing either Gab1(WT) or Gab1(Deltap85). Furthermore, small interference RNA-mediated Gab1 knockdown enhanced myogenic differentiation. Overexpression of catalytic-inactive SHP2 modulated IGF-I-induced myogenic differentiation and ERK1/2 activation similarly to that of Gab1(DeltaSHP2), suggesting that Gab1-SHP2 complex inhibits IGF-I-dependent myogenesis through ERK1/2. Consistently, the blockade of ERK1/2 pathway reversed the inhibitory effect of Gab1(WT) overexpression on myogenic differentiation, and constitutive activation of the ERK1/2 pathway suppressed the enhanced myogenic differentiation by overexpression of Gab1(DeltaSHP2). Collectively, these data suggest that the Gab1-SHP2-ERK1/2 signaling pathway comprises an inhibitory axis for IGF-I-dependent myogenic differentiation.  相似文献   

12.
Paired immunoglobulin-like receptor B (PIR-B) partially mediates the regeneration-inhibiting effects of the myelin-derived protein Nogo, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). In this study, we report that inhibition of the PIR-B signaling cascades in neurons enhances axon regeneration in the central nervous system (CNS). Binding of MAG to PIR-B led to the association of PIR-B with tropomyosin receptor kinase (Trk) neurotrophin receptors. Src homology 2-containing protein tyrosine phosphatase (SHP)-1 and SHP-2, which were recruited to PIR-B upon MAG binding, functioned as Trk tyrosine phosphatases. Further, SHP-1 and SHP-2 inhibition reduced MAG-induced dephosphorylation of Trk receptors and abolished the inhibitory effect of MAG on neurite growth. Thus, PIR-B associated with Trk to downregulate basal and neurotrophin-regulated Trk activity through SHP-1/2 in neurons. Moreover, in vivo transfection of small interfering RNA (siRNA) for SHP-1 or SHP-2 induced axonal regeneration after optic nerve injury in mice. Our results thus identify a new molecular target to enhance regeneration of the injured CNS.  相似文献   

13.
Mast cells are major players in allergic responses. IgE-dependent activation through FcεR leads to degranulation and cytokine production, both of which require Gab2. To clarify how the signals diverge at Gab2, we established Gab2 knock-in mice that express Gab2 mutated at either the PI3K or SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) binding sites. Examination of these mutants showed that both binding sites were required for the degranulation and anaphylaxis response but not for cytokine production or contact hypersensitivity. Furthermore, the PI3K, but not the SHP2, binding site was important for granule translocation during degranulation. We also identified a small GTPase, ADP-ribosylation factor (ARF)1, as the downstream target of PI3K that regulates granule translocation. FcεRI stimulation induced ARF1 activation, and this response was dependent on Fyn and the PI3K binding site of Gab2. ARF1 activity was required for FcεRI-mediated granule translocation. These data indicated that Fyn/Gab2/PI3K/ARF1-mediated signaling is specifically involved in granule translocation and the anaphylaxis response.  相似文献   

14.
We have examined the ability of epidermal growth factor (EGF)-stimulated ERK activation to regulate Grb2-associated binder-1 (Gab1)/phosphatidylinositol 3-kinase (PI3K) interactions. Inhibiting ERK activation with the MEK inhibitor U0126 increased the EGF-stimulated association of Gab1 with either full-length glutathione S-transferase-p85 or the p85 C-terminal Src homology 2 (SH2) domain, a result reproduced by co-immunoprecipitation of the native proteins from intact cells. This increased association of Gab1 and the PI3K correlates with an increase in PI3K activity and greater phosphorylation of Akt. This result is in direct contrast to what we have previously reported following HGF stimulation where MEK inhibition decreased the HGF-stimulated association of Gab1 and p85. In support of this divergent effect of ERK on Gab1/PI3K association following HGF and EGF stimulation, U0126 decreased the HGF-stimulated association of p85 and the Gab1 c-Met binding domain but did not alter the EGF-stimulated association of p85 and the c-Met binding domain. An examination of the mechanism of this effect revealed that the treatment of cells with EGF + U0126 increased the tyrosine phosphorylation of Gab1 as well as its association with another SH2-containing protein, SHP2. Furthermore, overexpression of a catalytically inactive form of SHP2 or pretreatment with pervanadate markedly increased EGF-stimulated Gab1 tyrosine phosphorylation. These experiments demonstrate that EGF and HGF-mediated ERK activation result in divergent effects on Gab1/PI3K signaling. HGF-stimulated ERK activation increases the Gab1/PI3K association, whereas EGF-stimulated ERK activation results in a decrease in the tyrosine phosphorylation of Gab1 and a decreased association with the PI3K. SHP2 is shown to associate with and dephosphorylate Gab1, suggesting that EGF-stimulated ERK might act through the regulation of SHP2.  相似文献   

15.
SH2 domains are a class of protein–protein interaction modules with the function to recognize and bind sequences characterized by the presence of a phosphorylated tyrosine. SHP2 is a protein phosphatase involved in the Ras‐ERK1/2 signaling pathway that possess two SH2 domains, namely, N‐SH2 and C‐SH2, that mediate the interaction of SHP2 with various partners and determine the regulation of its catalytic activity. One of the main interactors of the SH2 domains of SHP2 is Gab2, a scaffolding protein with critical role in determining cell differentiation. Despite their key biological role and the importance of a correct native fold to ensure it, the mechanism of binding of SH2 domains with their ligands and the determinants of their stability have been poorly characterized. In this article, we present a comprehensive kinetic study of the folding of the C‐SH2 domain and the binding mechanism with a peptide mimicking a region of Gab2. Our data, obtained at different pH and ionic strength conditions and supported by site‐directed mutagenesis, highlight the role of electrostatic interactions in the early events of recognition. Interestingly, our results suggest a key role of a highly conserved histidine residue among SH2 family in the interaction with negative charges carried by the phosphotyrosine of Gab2. Moreover, the analysis of the equilibrium and kinetic folding data of C‐SH2 describes a complex mechanism implying a change in rate‐limiting step at high denaturant concentrations. Our data are discussed under the light of previous works on N‐SH2 domain of SHP2 and other SH2 domains.  相似文献   

16.
Epidermal growth factor (EGF) induces paxillin tyrosine dephosphorylation and Src activation, but the signaling pathways that mediate these responses were largely undefined. We found that Gab1, a docking protein for the SHP2 protein-tyrosine phosphatase in EGF-stimulated cells, was associated with paxillin. SHP2 dephosphorylated paxillin and caused dissociation of Csk, a negative regulator of Src, from paxillin but had no effect on paxillin-Src association. A lower level of Src Tyr-530 phosphorylation was detected in paxillin-associated Src in EGF-stimulated cells. Expression of an SHP2 binding defective mutant of Gab1 (Gab1FF) or a catalytically inactive mutant of SHP2 (SHP2DN) prevented paxillin tyrosine dephosphorylation and Src activation induced by EGF. Importantly, Gab1FF blocked paxillin-SHP2 complex formation, Src Tyr-530 dephosphorylation, Erk activation, and cell migration induced by EGF. Inhibition of Src tyrosine kinase activity abrogated EGF-stimulated Erk activation and cell migration. Together, these results reveal that Gab1 recruits SHP2 to dephosphorylate paxillin, leading to dissociation of Csk from the paxillin-Src complex and Src activation and that Src is an SHP2 effector involved in EGF-stimulated Erk activation and cell migration.  相似文献   

17.
Using the FDC-P1 cell line expressing the exogenous macrophage colony-stimulating factor (M-CSF) receptor, Fms, we have analyzed the role of a new mammalian DOS/Gab-related signaling protein, called Gab3, in macrophage cell development of the mouse. Gab3 contains an amino-terminal pleckstrin homology domain, multiple potential sites for tyrosine phosphorylation and SH2 domain binding, and two major polyproline motifs potentially interacting with SH3 domains. Among the growing family of Gab proteins, Gab3 exhibits a unique and overlapping pattern of expression in tissues of the mouse compared with Gab1 and Gab2. Gab3 is more restricted to the hematopoietic tissues such as spleen and thymus but is detectable at progressively lower levels within heart, kidney, uterus, and brain. Like Gab2, Gab3 is tyrosine phosphorylated after M-CSF receptor stimulation and associates transiently with the SH2 domain-containing proteins p85 and SHP2. Overexpression of exogenous Gab3 in FD-Fms cells dramatically accelerates macrophage differentiation upon M-CSF stimulation. Unlike Gab2, which shows a constant mRNA expression level after M-CSF stimulation, Gab3 expression is initially absent or low in abundance in FD cells expressing the wild-type Fms, but Gab3 mRNA levels are increased upon M-CSF stimulation. Moreover, M-CSF stimulation of FD-FmsY807F cells (which grow but do not differentiate) fails to increase Gab3 expression. These results suggest that Gab3 is important for macrophage differentiation and that differentiation requires the early phosphorylation of Gab2 followed by induction and subsequent phosphorylation of Gab3.  相似文献   

18.
There is growing evidence that tyrosine phosphatases display an intrinsic enzymatic preference for the sequence context flanking the target phosphotyrosines. On the other hand, substrate selection in vivo is decisively guided by the enzyme-substrate connectivity in the protein interaction network. We describe here a system wide strategy to infer physiological substrates of protein-tyrosine phosphatases. Here we integrate, by a Bayesian model, proteome wide evidence about in vitro substrate preference, as determined by a novel high-density peptide chip technology, and "closeness" in the protein interaction network. This allows to rank candidate substrates of the human PTP1B phosphatase. Ultimately a variety of in vitro and in vivo approaches were used to verify the prediction that the tyrosine phosphorylation levels of five high-ranking substrates, PLC-γ1, Gab1, SHP2, EGFR, and SHP1, are indeed specifically modulated by PTP1B. In addition, we demonstrate that the PTP1B-mediated dephosphorylation of Gab1 negatively affects its EGF-induced association with the phosphatase SHP2. The dissociation of this signaling complex is accompanied by a decrease of ERK MAP kinase phosphorylation and activation.  相似文献   

19.
Thrombopoietin (TPO) is a recently characterized member of the hematopoietic growth factor family that serves as the primary regulator of megakaryocyte (MK) and platelet production. The hormone acts by binding to the Mpl receptor, the product of the cellular proto-oncogene c-mpl. Although many downstream signaling targets of TPO have been identified in cell lines, primary MKs, and platelets, the molecular mechanism(s) by which many of these molecules are activated remains uncertain. In this report we demonstrate that the TPO-induced activation of phosphoinositol 3-kinase (PI3K), a signaling intermediate vital for cellular survival and proliferation, occurs through its association with inducible signaling complexes in both BaF3 cells engineered to express Mpl (BaF3/Mpl) and in primary murine MKs. Although a direct association between PI3K and Mpl could not be demonstrated, we found that several proteins, including SHP2, Gab2, and IRS2, undergo phosphorylation and association in BaF3/Mpl cells in response to TPO stimulation, complexes that recruit and enhance the enzymatic activity of PI3K. To verify the physiological relevance of the complex, SHP2-Gab2 association was disrupted by overexpressing a dominant negative SHP2 construct. TPO-induced Akt phosphorylation was significantly decreased in transfected cells suggesting an important role of SHP2 in the complex to enhance PI3K activity. In primary murine MKs, TPO also induced phosphorylation of SHP2, its association with p85 and enhanced PI3K activity, but in contrast to the results in cell lines, neither Gab2 nor IRS2 are phosphorylated in MKs. Instead, a 100-kDa tyrosine-phosphorylated protein (pp100) co-immunoprecipitated with the regulatory subunit of PI3K. These findings support a model where PI3K activity is dependent on its recruitment into TPO-induced multiphosphoprotein complexes, implicate the existence of a scaffolding protein in primary MKs distinct from the known Gab and IRS proteins, and suggest that, in contrast to erythroid progenitor cells that employ Gab1 in PI3K signaling complexes, utilization of an alternate member of the Gab/IRS family could be responsible for specificity in TPO signaling.  相似文献   

20.
Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3'-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3'-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号