首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transverse histologic sections of bone marrow obtained from mice that were sacrificed by perfusion fixation at intervals following tritiated thymidine injection were studied by means of radioautography. A kinetic gradient was demonstrated across the marrow section, with the highest proliferative rate in the subendosteal region. Megakaryocytes were shown to originate from the rapidly proliferating subendosteal cells. The immediate proliferating precursors of mature granulocytes were slowly proliferating cells found predominantly in the central region of the marrow. It was concluded that in the steady state there must be a migration of cells from the subendosteal region to the central region with concomitant growth retardation of the migrating cells.  相似文献   

2.
Following Colcemid administration, mitoses accumulate preferentially in the subendosteal region of the bone marrow of the mouse. This finding suggests that the most rapidly proliferating cells are localized to the subendosteal region, and complements previous radioautographic studies which have demonstrated a corresponding labelling gradient in the marrow. Quantitative estimates of cell cycle time by the stathmokinetic method were precluded by the presence of significant Colcemid induced interphase cell loss. Colcemid also affected cell differentiation in the marrow. Following Colcemid administration there was a fall in mature granulocytes in the marrow, and a concommitant rise in marrow megakaryocytes.  相似文献   

3.
Following Colcemid administration, mitoses accumulate preferentially in the subendosteal region of the bone marrow of the mouse. This finding suggests that the most rapidly proliferating cells are localized to the subendosteal region, and complements previous radioautographic studies which have demonstrated a corresponding labelling gradient in the marrow. Quantitative estimates of cell cycle time by the stathmokinetic method were precluded by the presence of significant Colcemid induced interphase cell loss. Colcemid also affected cell differentiation in the marrow. Following Colcemid administration there was a fall in mature granulocytes in the marrow, and a concommitant rise in marrow megakaryocytes.  相似文献   

4.
Using electron microscopic cytochemistry and immunoelectron microscopy, the ultrastructure of bone marrow (BM) cells of the subendosteal region with a high colony-forming (CFUs) ability was studied. In comparison with the central part of BM, the subendosteal region of CBA and BALB/c mice contains a higher number of lymphocyte-like mononuclears, bearing an antigen, common with the brain surface one but negative for peroxidase and acid and alkaline phosphatase. The ultrastructure of these cells is similar to that of presumptive hematopoietic stem cells. In the subendosteal region mononuclears are concentrated with the lower nucleo-cytoplasmic ratio, a feston-like line of the nucleus and more numerous organoids. These cells are characteristic of BM myeloid islands composed of granulocytes being on various stages of differentiation, and of reticular cells positive for alkaline phosphatase.  相似文献   

5.
To understand bone marrow (BM) as a site of B-lymphocytopoiesis, insight into the topographical arrangement of developing B cells and their relationships to the microenvironment in vivo is required. To study the spatial distribution of B lymphocyte progenitors defined by intracellular markers (cytoplasmic mu H chain and nuclear terminal deoxynucleotidyl transferase (TdT], we developed a technique to cut frozen femurs of rat, yielding cross-sections with intact subendosteal and central marrow. By using (double) immunofluorescence staining techniques we located pre-B and TdT+ cells, and IgM+ B cells in those sections. Of the B cells present in BM, one-third was accumulated in the lumen of blood sinuses. The rest were in the BM parenchyma, as were virtually all pre-B and TdT+ cells. The subendosteal area was twice as rich in pre-B and TdT+ cells as the central area, and within the subendosteal area a profound positive gradient toward the bone was evident. B cells showed an equal distribution over the center and the periphery of the BM. The distribution patterns of B lineage cells in the BM parenchyma were analyzed and shown in part to deviate from random distribution. Additional study of clonal development and microenvironmental factors in hematopoiesis will have to clarify the underlying mechanisms for the observed distribution patterns of B cell precursors in BM.  相似文献   

6.
Architecture of the bone marrow vasculature, particularly that of the femur, was analyzed in three amphibian species in relation to the early phylogeny of marrow hematopoiesis. A dye-injection method and histological techniques, including both serial sectioning and reconstruction methods, were used for this purpose. From these observations the following conclusions may be drawn. (1) Marrow hematopoiesis is absent from the femur of the urodelan (Triturus pyrrhogaster) and appears first in the femur of the primitive anuran (Xenopus laevis) (2) The site of primitive hematopoiesis (granulopoiesis) is the subendosteal region where the venous vascular net develops. (3) The primitive vascular architecture observed in the femur of Xenopus is characterized by the absence of a central vein. Subendosteal veins drain the blood from the bone marrow. A vein collateral to the primary artery appears in the femur of Rana catesbeiana, an advanced anuran, in which further development of both the subendosteal venous plexus and hematopoietic activity are noted. In both anura examined, the primitive blood sinuses form near the mid-shaft of the femur. The proliferation of mesenchymal elements containing dark pigment, presumably melanin, was also noted in this area. (4) The architecture of marrow vessels in Rana approaches the structure noted in mammalian bone marrow. (5) Fat tissue is observed in the urodelan bone marrow prior to the appearance of hematopoietic activity. This indicates that the formation of marrow fat is phylogenetically unrelated to the development of hematopoiesis. The present investigation on primitive hematopoiesis suggests that the development of hematopoietic activity is intimately related to the development of the marrow vasculature, particularly that of the subendosteal venous plexus. A favorable vascular arrangement may be necessary to allow active hematopoiesis.  相似文献   

7.
In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the "quiescent" and "proliferative" niches in which hematopoietic stem cells and progenitors reside.  相似文献   

8.
Summary Mitotic index of the bone marrow cells was studied in femoral bone marrow of mice given 313 kBq239Pu kg–1. The attention was turned to the femoral midshaft and the mitose concentration, intensified by Colcemid stathmokinetic effect, was evaluated in a sampling field from endosteal surface to the central venous canal, throughout 68 weeks. It has been found that the plutonium effect in the sampling band is rather uniform except the points in subendosteal zone early after plutonium injection, where the mitotic index was reduced in such a way that the mitotic gradient, observed in controls, was affected. The mitotic activity in femoral diaphysis of plutonium injected mice was mobilized approximately till the 30th week of contamination. Later it deteriorated progressively. The results are discussed and should not be regarded as representative for the entire bone marrow hemopoiesis.  相似文献   

9.
The normal steady state production of natural killer (NK) cells in the bone marrow and spleen was characterized with cytokinetic technics. We developed a protocol to enrich for NK cells in bone marrow and demonstrate that target binding can be used as a criterion for marrow NK cells if nonspecifically "sticky" cells are eliminated. The selected population of B cell-depleted bone marrow lymphoid cells was comprised mainly of lymphocytes, of which 80% were NK-1.1+. B cell-depleted bone marrow lymphocytes that bound to YAC-1 could be characterized as two populations on the basis of morphology and proliferative status: large, proliferating target-binding cells (TBC), of which 25% were in S phase of the mitotic cycle, and small postmitotic TBC. Pulse and chase studies indicated that the small TBC in bone marrow were derived from an immediate proliferating precursor, presumably the large TBC, which were, in turn, derived from a precursor population that was more rapidly proliferating. In contrast, few if any splenic TBC were labeled after a 30-min pulse with [3H]TdR and significant numbers of labeled TBC did not appear in the spleen until 2 or more days after the pulse label. Surprisingly, some of the splenic TBC were relatively long lived and survived 2 mo or longer. These studies are the first to directly characterize the production of NK cells in situ in normal marrow. We demonstrate that the marrow is the primary site of production of NK cells and that little, if any, proliferation of NK cells occurs in the periphery of unstimulated mice. The data suggest the existence in the bone marrow of at least three compartments in the NK lineage: a rapidly proliferating NK precursor population, a less rapidly proliferating population of large TBC, and a population of small postmitotic TBC.  相似文献   

10.
11.
We have developed a method to section frozen long bones of rat and mouse and stained bone marrow (BM) by (double) immunofluorescence and immunoperoxidase. Here we report this method and reveal the location of early hemopoietic progenitors (Thy-1) and myeloid cells (Mac-1) in mouse BM, and early hemopoietic progenitors and lymphoid cells (Thy-1), erythroid cells (HIS49), and macrophages (ED2) in rat BM. In mouse BM our new findings include (a) the scattered localization of early hemopoietic progenitors (Thy-1low) all over the marrow, and (b) the presence of Thy-1+ stromal cells, mainly subendosteally. In rat BM an important finding is that of (a) a subendosteal region of 12-14 hemopoietic cell layers characterized by an abundance of Thy-1 and the virtual absence of erythroid cells, and (b) the scattering of Thy-1very bright cells which are candidates for the earliest hemopoietic progenitors in this species. The results illustrate that the technique is an excellent tool for studying the topology of BM as an organ of hemopoiesis.  相似文献   

12.
McMahon  S.S.  McDermott  K.W. 《Brain Cell Biology》2001,30(9-10):821-828
The mechanisms that control the production and differentiation of glial cells during development are difficult to unravel because of displacement of precursor cells from their sites of origin to their permanent location. The two main neuroglial cells in the rat spinal cord are oligodendrocytes and astrocytes. Considerable evidence supports the view that oligodendrocytes in the spinal cord are derived from a region of the ventral ventricular zone (VZ). Some astrocytes, at least, may arise from radial glia. In this study a 5-Bromo-2′-deoxyuridine (BrdU) incorporation assay was used to identify proliferating cells and examine the location of proliferating glial precursor cells in the embryonic spinal cord at different times post BrdU incorporation. In this way the migration of proliferating cells into spinal cord white matter could be followed. At E14, most of the proliferating cells in the periventricular region were located dorsally and these cells were probably proliferating neuronal precursors. At E16 and E18, the majority of the proliferating cells in the periventricular region were located ventrally. In the white matter the number of proliferating cells increased as the animals increased in age and much of this proliferation occurred locally. BrdU labelling showed that glial precursor cells migrate from their ventral and dorsal VZ birth sites to peripheral regions of the cord. Furthermore although the majority of proliferating cells in the spinal cord at E16 and E18 were located in the ventral periventricular region, some proliferating cells remained in the dorsal VZ region of the cord.  相似文献   

13.
Colony formation and growth in vitro by C57B1 mouse bone marrow cells were analysed following stimulation by a standard dose of serum colony stimulating factor. Under restricted conditions, colony crowding was observed to potentiate colony growth rates. The addition of thymic or lymph node lymphoid cells or nonviable bone marrow cells also potentiated colony growth. Extensive reutilisation of nuclear material by bone marrow colony cells was observed when labeled lymphoid and bone marrow cells were added to the culture system. The results provide evidence that lymphocytes can exert trephocytic effects on proliferating hematopoietic cells.  相似文献   

14.
Immunohistochemical detection of proliferating cells in vivo   总被引:3,自引:0,他引:3  
Incorporation of the thymidine analogue 5-bromo-2'-deoxyuridine (BrUdR) into newly synthesized DNA provides the basis of a simple technique for identifying proliferating cells. BrUdR was administered to C57BL/6 mice by continuous infusion for 1-7 days, or by intraperitoneal injection for shorter intervals. Various tissue types, including gut, kidney, and liver, were excised, fixed in neutral buffered formalin, and paraffin-embedded for sectioning. De-paraffinized 4-micron tissue sections and bone marrow samples were incubated with an anti-BrUdR antibody and cells that had traversed S-phase during the BrUdR exposure period were identified immunohistochemically. Proliferation and migration of intestinal epithelial cells were identified by antibody staining after continuous in vivo exposure to BrUdR for 1-4 days, and BrUdR incorporation into proliferating marrow cells was detected within 30 min. Tissues such as normal liver, known to have low levels of proliferation, remained unstained after 3 days' exposure to BrUdR. After we established that normal proliferating cells could be identified using this technique, BrUdR was administered to mice bearing B16 melanomas. Again, proliferating tumor cells were clearly identified in histological sections. The nuclei from these paraffin-embedded tumors were also collected for flow cytometric analysis after de-waxing, rehydration, and pepsin treatment. This combination of techniques made possible the comparison in adjacent tissue sections of labeling index, obtained from stained sections, with percentage S-phase, measured using DNA flow cytometry. The % S-phase was consistently higher than the labeling index obtained with immunocytochemistry, and two-parameter DNA vs BrUdR flow cytometry showed that this difference could be accounted for by a population of unlabeled cells with an S-phase DNA content.  相似文献   

15.
Two chromosomally distinguishable haemopoietic cell populations were injected into lethally irradiated syngeneic recipients. The presence or absence of the T(14;15)6Ca reciprocal translocation (indicated by T6 marker chromosomes) did not affect the proliferation of a population. Wide disparities were found in the proportions of the two donor cell populations between animals and between the right and left femora of individual animals. This suggest (i) that there is, at most, a very limited interchange of proliferating cells and their precursors between the marrow of different bones; and (ii) that the number of clones proliferating in the bone marrow at any one time must be rather small; there was evidence that this number depended in part on the number of haemopoietic cells injected. Exchange between the mitotically active cell populations of spleen, thymus, lymph nodes and bone marrow was also limited, as shown by significant disparities in the proportions of the two donor populations proliferating in the different tissues of individual mice.  相似文献   

16.
The relative importance of the bone marrow and spleen in the production of B lymphocytes was investigated in guinea pigs by the combined use of [3H]TdR radio-autography and fluorescent microscopy after the staining of B cells by FITC-F(ab′)2-goat-anti-guinea pig Ig. Large and small lymphoid cells possess sIg in the marrow and spleen but B cell turnover in the marrow exceeds that in the spleen. That newly generated bone marrow B cells are not derived from an extramyeloid bursa equivalent was demonstrated by the absence of [3H]TdR labeled B cells in tibial marrow 72 hr after [3H]TdR was administered systemically, while the circulation to the hind limbs was occluded. Pulse and chase studies with [3H]TdR showed that large marrow B cells are derived from sIg-negative, proliferating precursors resident in the bone marrow and not from the enlargement of activated small B lymphocytes. The acquisition of [3H]TdR by splenic B cells lagged behind that observed in the marrow. Three days after topical labeling of tibial and femoral bone marrow with [3H]TdR, a substantial proportion of splenic B cells were replaced by cells that had seeded there from the labeled marrow. The studies unequivocally identify the bone marrow as the organ of primary importance in B cell generation and indicate that in the guinea pig rapidly renewed B lymphocytes of the spleen are replaced by lymphocytes recently generated in bone marrow. The rate of replacement of B lymphocytes in the lymph node by cells newly generated in the bone marrow takes place at a slower tempo than in the spleen.  相似文献   

17.
Summary The Ki-67 monoclonal antibody which recognizes a human nuclear antigen expressed by cycling cells but not by resting cells was found to react immunohistochemically with tissues from the rabbitOryctolagus cuniculus. Ki-67 immunoreactivity was restricted to the nucleus. A comparative study with bromodeoxyuridine labelling patterns was carried out to study the association with proliferating cells. In lingual, jejunal and appendix mucosa, skin, adrenal gland, thymus, spleen, bone marrow, testis, growth cartilage, periosteum and perichondrium of long bones the distribution of Ki-67 positive and bromodeoxyuridine labelled cells was similar and consistent with the distribution of proliferating cells in these tissues. In tissue from the brain, kidney, skeletal or cardiac muscle and liver no Ki-67 positive or bromodeoxyuridine labelled cells were seen. In cartilage labelled in vivo with tritiated thymidine, all thymidine labelled cells were also Ki-67 positive. These results suggest that the Ki-67 antibody recognizes a nuclear antigen in the rabbit that is associated with cell proliferation and is expressed by cells in S-phase as well as in other phases of the cell cycle.  相似文献   

18.
S S Apte 《Histochemistry》1990,94(2):201-204
The Ki-67 monoclonal antibody which recognizes a human nuclear antigen expressed by cycling cells but not by resting cells was found to react immunohistochemically with tissues from the rabbit Oryctolagus cuniculus. Ki-67 immunoreactivity was restricted to the nucleus. A comparative study with bromodeoxyuridine labelling patterns was carried out to study the association with proliferating cells. In lingual, jejunal and appendix mucosa, skin, adrenal gland, thymus, spleen, bone marrow, testis, growth cartilage, periosteum and periochondrium of long bones the distribution of Ki-67 positive and bromodeoxyuridine labelled cells was similar and consistent with the distribution of proliferating cells in these tissues. In tissue from the brain, kidney, skeletal or cardiac muscle and liver no Ki-67 positive or bromodeoxyuridine labelled cells were seen. In cartilage labelled in vivo with tritiated thymidine, all thymidine labelled cells were also Ki-67 positive. These results suggest that the Ki-67 antibody recognizes a nuclear antigen in the rabbit that is associated with cell proliferation and is expressed by cells in S-phase as well as in other phases of the cell cycle.  相似文献   

19.
As revealed by the method of cultivation of bone marrow and spleen cells, separated by nucleopore membrane, in two-chamber bottles, the bone marrow cells were capable of producing humoral factor stimulating antibody genesis by the spleen cells. A direct contact of the bone marrow cells with the actively proliferating antigen-stimulated cells of the spleen led to production of a spleen humoral factor suppressing the antibody genesis by the spleen cells. The suppressive action of the bone marrow cells on the antibody genesis in the culture of the spleen cells was mediated through the suppression of the spleen cells proliferation; proliferation of the bone marrow cells is enhanced.  相似文献   

20.
The granulocytic chalone is secreted by mature granulocytes and inhibits 3H-thymidine incorporation of proliferating granulocytes in vitro . The effect and the cell line specificity of this chalone was assessed with the in vivo diffusion chamber culture technique. Tests were carried out on cultures from normal mouse bone marrow cells and mouse and rat blood leucocytes. The majority of the DNA synthesizing cells in marrow cultures were proliferating granulocytes. Macrophages and immunoblasts proliferated in rat leucocyte cultures, when the chambers had been carried for 5 days in host mice. Repeated chalone or control injections were given i.p. to the host mice during 6–7 hr prior to 3H-thymidine injection. Isotope uptake of proliferative granulocytes was reduced by the chalone treatment. No such effect was found on the rat immunoblasts and macrophages. The viability of cultured cells was apparently not affected by the chalone treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号