首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacteriocin was found in the supernatant fluid of Clostridium septicum strain Ovinus. Sensitivity to the bacteriocin was confined to other strains of C. septicum and to strains of C. chauvoei; the other Gram-positive and Gram-negative bacteria tested for sensitivity were unaffected by the bacteriocin. The bacteriocin killed sensitive cells rapidly but cell lysis did not appear to be involved. The bacteriocin inhibited protein and RNA synthesis immediately after its addition to sensitive cells; DNA synthesis was inhibited 10 min later.  相似文献   

2.
A non-competitive inhibition of binding of cAMP to bovine protein kinase by ochratoxin A (OTA) is shown. Preliminary evidence of a protein kinase in Streptococcus faecalis is presented. The cAMP stimulation of this kinase is also inhibited by OTA. At the lowest OTA concentrations, RNA and protein synthesis are inhibited in S. faecalis. The inhibition of RNA synthesis is secondary, as in the presence of chloramphenicol no inhibition occurs for 10 min after the addition of OTA. The synthesis but not the induction of beta-P-galactosidase is inhibited by OTA. The polysomes of S. faecalis are stabilized after addition of OTA, showing an inhibition of peptide elongation. The model of action of OTA in bacteria is discussed and it is concluded that inhibition of protein synthesis is the process which might be closest to the primary target of OTA.  相似文献   

3.
Protein synthesis was drastically inhibited in HeLa cells incubated for 5 min at 42.5 degrees C, but it resumed after 20 min at a rate about 50% that of control cells. After 10 min of heat shock, the binding of Met-tRNAf to 40 S ribosomal subunits was greatly reduced and a polypeptide identified by immunoprecipitation with the alpha subunit of eukaryotic initiation factor-2 (eIF-2) was phosphorylated. Extracts prepared from control and heat-shocked cells were assayed for in vitro protein synthesis. Both extracts were active when supplemented with hemin, but the extract from heat-shocked cells had little initiation activity without this addition. A Mr 90,000 polypeptide and eIF-2 alpha were phosphorylated in this extract, but hemin or an antibody which inhibits the protein kinase designated heme-controlled repressor reduced this phosphorylation. These findings implicated heme-controlled repressor as the kinase at least in part responsible for eIF-2 alpha phosphorylation. Furthermore, the initial inhibition of protein synthesis and eIF-2 alpha phosphorylation after heat shock were reduced by adding hemin to intact HeLa cells. These cells synthesized heat-shock proteins with some delay relative to cells without added hemin. The binding of Met-tRNAf to 40 S ribosomal subunits was inhibited by about 50% in extracts prepared from cells heat-shocked for 40 min, and eIF-2 alpha phosphorylation was increased in these cells. These results suggest that heme-controlled repressor is activated in heat-shocked cells and that eIF-2 alpha phosphorylation limits mRNA translation even after partial recovery of protein synthesis.  相似文献   

4.
Protein synthesis in polyoma virus-infected cells was inhibited by 99% within 4 min after exposure to 10 mug of cycloheximide per ml. Subsequent to the block in protein synthesis, the rate of viral DNA synthesis declined via inhibition of the rate of initiation of new rounds of genome replication (Yu and Cheevers, 1976). This process was inhibited with complex kinetics: within 15 min after the addition of cycloheximide, the rate of formation of closed-circular viral DNA was reduced by about one-half. Thereafter, DNA synthesis in cycloheximide-treated cells declined more slowly, reaching a level of 10% of untreated cells only after approximately 2 h. Protein synthesis was also required for normal closure of progeny form I DNA: in the presence of cycloheximide, DNA synthesis was diverted from the production of form I to form Ic, a monomeric closed-circular DNA component deficient in superhelical turns (Yu and Cheevers, 1976). Form I is replaced by Ic with first-order exponential kinetics. It is concluded that at least two proteins are involved in the control of polyoma DNA replication. One is apparently a stoichiometric requirement involved in the initiation step of viral DNA synthesis, since this process cannot be maintained at a normal rate for more than a few minutes in the absence of protein synthesis. The second protein requirement, governing the closure of newly synthesized progeny DNA, is considered distinct from the "initiation" protein on the basis of the kinetic data.  相似文献   

5.
6.
Patulin exhibits both cytotoxic and cytopathic effects on cultured Chang liver cells. The LD50 found was 1.85 mug per ml of patulin. Effects on growth were observed with as little as 0.1 mug per ml of patulin; a 50% reduction in growth was observed at 0.38 mug per ml of patulin. Using a challenge dose of 2.5 mug per ml of patulin, the cytotoxic effect was reversible after an exposure of 10 min, but was not reversible after 20 min. Protein synthesis was depressed after 60 min and RNA synthesis after 20 min of contact with patulin. Neither protein nor RNA synthesis was completely inhibited after 260 min.  相似文献   

7.
Zearalenone and its derivatives (alpha-zearalenol and alpha-zearalanol), estrogenic mycotoxins produced by Fusarium species, when added in vivo and in vitro to immature rat uteri, induced the incorporation of labeled amino acids into a specific uterine protein (induced protein). When immature rat uteri were incubated with alpha-zearalenol in vitro, the maximum induction of the induced protein synthesis was obtained with 1 x 10(-6) M and the induction was detected 15 min after the start of the incubation. Moreover, this induction was strongly inhibited by prior addition of inhibitors of RNA synthesis such as alpha-amanitin and actinomycin D. The molecular weight of the induced protein obtained by the in vivo and in vitro treatments with zearalenone and alpha-zearalenol was estimated to be about 52,000 by means of SDS-polyacrylamide gel electrophoresis. These findings clearly indicate that these estrogenic mycotoxins, despite their non-steroidal structures, exhibit an estrogenic activity toward target tissues in a similar manner to that of natural estrogens.  相似文献   

8.
Zinc ions (10 mM) have been reported previously to inhibit the yeast to mycelium transition in Sporothrix schenckii. Yeast cells of this fungus were harvested, selected by filtration and allowed to form germ tubes in a basal medium with glucose in the presence of 10 mM zinc and the effects of this ion on protein, RNA and DNA synthesis and nuclear division recorded. All of these processes were affected by the addition of 10 mM zinc to the medium. Nevertheless, the inhibition of protein synthesis was observed earlier than that of RNA or DNA synthesis and was of a greater magnitude than that observed for both of these processes. Protein synthesis was inhibited within the first hour after inoculation, at which time this process begins in the control cells. RNA synthesis was inhibited during the 3 to 6 h interval after inoculation, that is, 3 h after the start of this process in the control cells. After 9 h of incubation, the inhibition of protein synthesis had reached its maximum at 70%, while that of RNA synthesis was only 52%. DNA synthesis was slightly inhibited, with maximum inhibition being observed 9 h after inoculation. Nuclear division in cells forming germ tubes in the presence of 10 mM zinc took place with a 3 h delay in relation to the control cells. These observations suggest that the inhibition of protein synthesis might be the most important mechanism by which zinc inhibits the yeast to mycelium transition in S. schenckii.  相似文献   

9.
Chloral hydrate produces a biphasic change in the proportion in the cell. Within 1 to 2 min after addition to cells, it inhibits protein synthesis and causes polysomes to break down. The ribosomes dissociate from mRNA by a process which requires protein synthesis but which is apparently abnormal. Released ribosomes do not appear to be bound to fragments of mRNA, but do carry a nascent polypeptide chain. Protein synthesis remains inhibited by more than 85% for over 24 hours, but the apparently normal polyteraction of the cells with chloral hydrate itself and not from its conversion of its usual metabolic products, trichloroethanol or trichloroacetic acid.  相似文献   

10.
11.
Mode of Action of Myxin on Escherichia coli   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of the new antibiotic, myxin, on the syntheses of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein in Escherichia coli (strains B and 15T(-)) was examined. Within 7 min of the addition of myxin at 5 mug/ml, the synthesis of new bacterial DNA was almost completely inhibited. This was followed by an extensive degradation of the pre-existing DNA to an acid-soluble form. All of the evidence indicated that the primary effect of the antibiotic was on cellular DNA. The synthesis of RNA was completely inhibited after 15 min of exposure to myxin (5 mug/ml), and the synthesis of protein was markedly reduced after 30 min. There was no measurable breakdown of either RNA or protein in the myxin-treated cells. A marked stimulation of (14)C-uracil incorporation was found in the presence of myxin in 15T(-) cells only. This did not result from an increased rate of RNA synthesis but was due to an increase in the proportion of exogenous uracil, relative to endogenous uracil, incorporated into cellular RNA. This probably reflected a partial inhibition of the biosynthesis of uridine monophosphate from orotate. At 4.5 mug of myxin per ml and with 0.8 x 10(8) cells per ml, 50% of the antibiotic was reduced in 15 min from the biologically active oxidized form to the biologically inactive state. Under these conditions, a maximum of 0.6% (27 mumug/ml) of the myxin was retained in the cells.  相似文献   

12.
In Lactobacillus plantarum 17-5, lipid synthesis appears to be correlated with protein synthesis. Inhibition of protein synthesis by chloramphenicol (50 mug/ml) caused the nearly simultaneous inhibition of incorporation of radioactive oleic acid into polar lipids before the cessation of growth. In addition, de novo fatty acid synthesis, as determined by the incorporation of radioactive acetate into cellular lipids, was also inhibited. Removal of the antibiotic resulted in the resumption of growth, protein synthesis, and polar lipid synthesis. Inhibition of protein synthesis by leucine deprivation also produced a marked reduction in the incorporation of radioactive oleic acid into the total polar lipids at about the same time that growth stopped (30 to 60 min after the removal of leucine). However, the different classes of lipids behaved differently. For example, the incorporation of oleic acid into cardiolipin was inhibited immediately upon removal of leucine from the cultures, whereas incorporation into phosphatidyl-glycerol was maintained at near normal rates for 60 min after the removal of leucine and then ceased. In contrast, the accumulation of radioactive oleic acid in a neutral lipid identified as diglyceride occurred to a much greater extent in leucine-deprived cultures than in control (+ leucine) cultures. Upon addition of leucine to leucine-deprived cultures, the rates of synthesis of phosphatidyl-glycerol and cardiolipin returned to normal; the amount of radioactivity in the diglyceride fraction decreased to normal levels concomitantly with increased phospholipid synthesis.  相似文献   

13.
Control of Lysis of T4-infected Escherichia coli   总被引:2,自引:1,他引:1       下载免费PDF全文
The lysis of Escherichia coli B/5 infected with T4Dr48 could be delayed by addition of 9-aminoacridine (9AA). Infected cells showed an early period of maximal response followed by a decline in sensitivity. The ultimate rate of lysis was also affected by the dye. Deoxyribonucleic acid (DNA), protein, and lysozyme synthesis began at the normal time in complexes inhibited by 9AA addition. The rates of synthesis of these macromolecules were lower in the presence of the dye, with DNA and lysozyme synthesis being more strongly affected than total protein synthesis. Penicillin-sensitive cell wall synthesis stopped at about 10 min after infection. Inhibition of oxidative metabolism by early potassium cyanide addition prevented lysis in the presence of intracellular lysozyme. The cyanide-sensitive event occurred at about 20 min in normal infections, and between 30 and 40 min in 9AA-inhibited infections. 9AA could alter both the time at which the cyanide-sensitive event occurred and the time of lysis. Addition of chloramphenicol did not prevent lysis once intracellular lysozyme was present. Lysis from without of infected cells consisted of three phases: an initial sensitivity, followed by a short period of resistance, and then a return to sensitivity in normal infections. The demonstration of the late return to sensitivity depended on the presence of intracellular lysozyme, and could be delayed by 9AA addition.  相似文献   

14.
Proteoglycan synthesis by cultured chondrocytes from the Swarm rat chondrosarcoma was examined after treatment with 0.1 mg/ml of cycloheximide which inhibited [3H]serine incorporation into total protein by greater than 90%. Incorporation of [35S]sulfate into proteoglycans decreased with nearly first order kinetics (t 1/2 = 96 +/- 6 min) with an accompanying increase in the size of the proteoglycan molecules, primary due to an increase in chondroitin sulfate chain sizes. After 5 h of cycloheximide treatment, when [35S]sulfate incorporation was inhibited by about 90%, addition of 1 mM beta-D-xyloside restored 76% of the incorporation into chondroitin sulfate observed in cultures treated only with xyloside. This suggests that the biochemical pathways for the affected by cycloheximide treatment. Cultures were prelabeled for 15 min with either [3H]serine or [35S]-methionine, and then cycloheximide was added to block further protein synthesis. Both precursors appeared in completed proteoglycan molecules with nearly first order kinetics with t 1/2 values of 92 +/- 8 and 101 +/- 11 min for [3H]serine and [35S]methionine, respectively, values in close agreement with the t 1/2 from the [35S]sulfate data. These results suggest that after cycloheximide treatment, the rate of [35S]sulfate incorporation into proteoglycan, after a correction for increases in chondroitin sulfate chain size, was directly proportional to the size of the intracellular pool of core protein. From the steady state rate of proteoglycan synthesis (estimated to be about 80 ng/min/10(6) cells in separate experiments) and a corrected t 1/2 value of 60 min, the amount of precursor core protein can be calculated to be about 500 ng/10(6) cells in these experiments.  相似文献   

15.
The addition of sulfur to iron-grown Thiobacillus ferrooxidans resulted in a rapid inhibition in the rates of protein synthesis and RNA synthesis. The inhibition of both functions was measured within 15 to 30 min and was maximal between 70 and 90% compared to the iron-grown controls. DNA synthesis, carbon dioxide fixation, and short-term ferrous oxidation rates of the bacteria growing on ferrous ions were not effected by sulfur addition, indicating that the sulfur addition was not perturbing general cellular energy metabolism. The inhibition caused by sulfur mimicked the effect of the RNA synthesis inhibitor, rifampicin, which inhibited both RNA and protein synthesis, but did not correspond with the translational inhibitor, chloramphenicol, which inhibited only protein synthesis in the first hour. Since chloramphenicol pretreatment did not block the sulfur effect, the inhibition of RNA synthesis following sulfur addition was not mediated through protein synthesis.  相似文献   

16.
A clinical isolate of Staphylococcus aureus was found to be tolerant (MBC much greater than MIC) to a number of beta-lactam antibiotics, including oxacillin. Biophotometric analysis showed that a number of concentrations of oxacillin were capable of stimulating rapid cellular lysis in this organism, but the extent of lysis was antibiotic concentration dependent and limited. Cell cultures treated with an antibiotic concentration yielding the maximum rate and extent of lysis were analyzed for protein and RNA synthesis by pulse-labeling techniques. RNA synthesis was initially stimulated and then severely inhibited. Protein synthesis was not inhibited initially; however, the increase in the rate of synthesis expected as the result of logarithmic growth was not observed. Instead, the antibiotic-treated culture maintained for approximately 50 min the rate of protein synthesis ongoing at the time of antibiotic addition. The rate of protein synthesis declined thereafter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of protein samples taken 1 and 3 h after antibiotic addition showed that the shutdown of protein synthesis was not coordinate but rather was suggestive of the operation of a stress regulon perhaps similar to those responsible for heat shock, SOS, and oxidation stress.  相似文献   

17.
The involvement of short-lived proteins in the steroidogenic action of corticotropic peptides has been investigated in vitro by means of a perifusion technique using frog adrenal glands. Graded concentrations of cycloheximide (10(-7) M to 10(-5) M) led to a dose-related inhibition of corticosterone and aldosterone production. The perifusion model gives detailed information on the kinetics of the inhibitory effect of cycloheximide. This effect was rapidly observed (the lag period was about 15 min), maximum inhibition being obtained 25 min after the end of administration of the protein synthesis inhibitor. Whatever the concentration of cycloheximide, corticosteroid output returned to basal values 2 h after the onset of cycloheximide infusion. Stimulation of steroidogenesis by ACTH and angiotensin II was totally inhibited by cycloheximide (10(-6) M) indicating that the synthesis of a labile protein was required for the adrenal response to corticotropic peptides. In addition, the stimulatory effect of cAMP and PGE1, which are considered to be the second messengers of ACTH and angiotensin II in amphibian interrenal gland, was blocked by cycloheximide. Taken together, these data suggest that a labile protein is involved in an early step of corticosteroid biosynthesis in the frog.  相似文献   

18.
Martin L. Pato  Claudia Reich 《Cell》1982,29(1):219-225
Transposition of genetic elements involves coupled replication and integration events catalyzed in part by a class of proteins called transposases. We have asked whether the transposase activity of bacteriophage Mu (the Mu A protein) is stable and capable of catalyzing multiple rounds of coupled replication/integration, or whether its continued synthesis is required to maintain Mu DNA replication. Inhibition of protein synthesis during the lytic cycle with chloramphenicol inhibited Mu DNA synthesis with a half-life of approximately 3 min, demonstrating a need for continued protein synthesis to maintain Mu DNA replication. Synthesis of specific Mu-encoded proteins was inhibited by infecting a host carrying a temperature-sensitive suppressor, at permissive temperature, with Mu amber phages, then shifting to nonpermissive temperature. When Aam phages were used, Mu DNA replication was inhibited with kinetics essentially identical to those with chloramphenicol addition; hence, it is likely that continued synthesis of the Mu A protein is required to maintain Mu DNA replication. The data suggest that the activity of the Mu A protein is unstable, and raise the possibility that the Mu A protein and other transposases may be used stoichiometrically rather than catalytically.  相似文献   

19.
The variant cell line of H4-II-E-C3 cells derived from the Reuber H-35 hepatoma cells has been established using protein- and lipid-free synthetic medium. This H4-II-E-C3-V line can synthesize and secrete considerable amounts of alpha-fetoprotein (AFP) and albumin. The addition of 5 X 10(-7) M dexamethasone to the medium stimulated the excretion of AFP without increasing total AFP synthesis, whereas 8.7 X 10(-8) M insulin inhibited the excretion of AFP without a significant inhibition of intracellular AFP synthesis. However, neither dexamethasone nor insulin altered either the cellular or secreted levels of albumin. Cells were pulse labeled with [35S]methionine and then chased after addition of excess unlabeled methionine. AFP appeared in the medium after 10 min, and 50% of the protein was secreted after 110 min. The rate of secretion of AFP was much slower than that of albumin, 50% of which was secreted after 25 min. Dexamethasone, 5 X 10(-7) M, caused a marked enhancement in the rate of AFP secretion, with 50% released after 75 min. Insulin, 8.7 X 10(-8) M, by contrast, caused a marked delay in AFP secretion with only 20% released after 180 min and then a plateau was approached. Since the intracellular AFP was excreted 55% after 180 min the remaining 25% of newly made AFP was suggested to be degraded during secretion. The kinetics of movement of AFP during secretion and endoglycosidase H treatment of intracellular and secreted AFP suggested that insulin impeded the transport of AFP from the rough endoplasmic reticulum to the Golgi apparatus.  相似文献   

20.
Extracellular Enzyme Secretion by Pseudomonas lemoignei   总被引:14,自引:5,他引:9       下载免费PDF全文
The ability of succinate to repress the secretion of Pseudomonas lemoignei poly-beta-hydroxybutyrate depolymerase was a function of pH. Repression only occurred when the pH of the medium was 7.0 or less. At a higher pH, lack of sensitivity to succinate concentration may have been due to a limited ability to transport succinate. Actively secreting cultures (at pH 7.4) continued to secrete enzyme for approximately 30 min after the pH was rapidly decreased to pH 6.8, even though sufficient succinate was present to repress enzyme synthesis. Similarly, after the addition of rifampin to secreting cultures, there was a 30-min delay before secretion was inhibited. Evidence is presented which suggests that continued secretion may be the result of depolymerase messenger ribonucleic acid accumulation within the cells. Studies with chloramphenicol indicated that de novo protein synthesis is necessary for the secretion of poly-beta-hydroxybutyrate depolymerase and that exoenzyme is not released from a preformed pool. Studies with various inhibitors of protein synthesis indicated that synthesis of exoenzyme is 5 to 10 times more susceptible to inhibition than is the synthesis of cell-associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号