首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study of normal subjects exercising at sea level and simulated altitude, ventilation-perfusion (VA/Q) inequality and alveolar-end-capillary O2 diffusion limitation (DIFF) were found to increase on exercise at altitude, but at sea level the changes did not reach statistical significance. This paper reports additional measurements of VA/Q inequality and DIFF (at sea level and altitude) and also of pulmonary arterial pressure. This was to examine the hypothesis that VA/Q inequality is related to increased pulmonary arterial pressure. In a hypobaric chamber, eight normal subjects were exposed to barometric pressures of 752, 523, and 429 Torr (sea level, 10,000 ft, and 15,000 ft) in random order. At each altitude, inert and respiratory gas exchange and hemodynamic variables were studied at rest and during several levels of steady-state bicycle exercise. Multiple inert gas data from the previous and current studies were combined (after demonstrating no statistical difference between them) and showed increasing VA/Q inequality with sea level exercise (P = 0.02). Breathing 100% O2 did not reverse this increase. When O2 consumption exceeded about 2.7 1/min, evidence for DIFF at sea level was present (P = 0.01). VA/Q inequality and DIFF increased with exercise at altitude as found previously and was reversed by 100% O2 breathing. Indexes of VA/Q dispersion correlated well with mean pulmonary arterial pressure and also with minute ventilation. This study confirms the development of both VA/Q mismatch and DIFF in normal subjects during heavy exercise at sea level. However, the mechanism of increased VA/Q mismatch on exercise remains unclear due to the correlation with both ventilatory and circulatory variables and will require further study.  相似文献   

2.
Eight normal subjects were decompressed to barometric pressure (PB) = 240 Torr over 40 days. The ventilation-perfusion (VA/Q) distribution was estimated at rest and during exercise [up to 80-90% maximal O2 uptake (VO2 max)] by the multiple inert gas elimination technique at sea level and PB = 428, 347, 282, and 240 Torr. The dispersion of the blood flow distribution increased by 64% from rest to 281 W, at both sea level and at PB = 428 Torr (heaviest exercise 215 W). At PB = 347 Torr, the increase was 79% (rest to 159 W); at PB = 282 Torr, the increase was 112% (108 W); and at PB = 240 Torr, the increase was 9% (60 W). There was no significant correlation between the dispersion and cardiac output, ventilation, or pulmonary arterial wedge pressure, but there was a correlation between the dispersion and mean pulmonary arterial pressure (r = 0.49, P = 0.02). When abnormal, the VA/Q pattern generally had perfusion in lung units of zero or near zero VA/Q combined with units of normal VA/Q. Alveolar-end-capillary diffusion limitation of O2 uptake (VO2) was observed at VO2 greater than 3 l/min at sea level, greater than 1-2 l/min VO2 at PB = 428 and 347 Torr, and at higher altitudes, at VO2 less than or equal to 1 l/min. These results show variable but increasing VA/Q mismatch with long-term exposure to both altitude and exercise. The VA/Q pattern and relationship to pulmonary arterial pressure are both compatible with alveolar interstitial edema as the primary cause of inequality.  相似文献   

3.
Pulmonary gas exchange in humans during exercise at sea level   总被引:3,自引:0,他引:3  
Previous studies have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during exercise at simulated altitude and suggested that similar changes could occur even at sea level. We used the multiple-inert gas-elimination technique to further study gas exchange during exercise in healthy subjects at sea level. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate, minute ventilation, respiratory rate, and blood temperature were recorded at rest and during steady-state exercise in the following order: rest, minimal exercise (75 W), heavy exercise (300 W), heavy exercise breathing 100% O2, repeat rest, moderate exercise (225 W), and light exercise (150 W). Alveolar-to-arterial O2 tension difference increased linearly with O2 uptake (VO2) (6.1 Torr X min-1 X 1(-1) VO2). This could be fully explained by measured VA/Q inequality at mean VO2 less than 2.5 l X min-1. At higher VO2, the increase in alveolar-to-arterial O2 tension difference could not be explained by VA/Q inequality alone, suggesting the development of diffusion limitation. VA/Q inequality increased significantly during exercise (mean log SD of perfusion increased from 0.28 +/- 0.13 at rest to 0.58 +/- 0.30 at VO2 = 4.0 l X min-1, P less than 0.01). This increase was not reversed by 100% O2 breathing and appeared to persist at least transiently following exercise. These results confirm and extend the earlier suggestions (8, 21) of increasing VA/Q inequality and O2 diffusion limitation during heavy exercise at sea level in normal subjects and demonstrate that these changes are independent of the order of performance of exercise.  相似文献   

4.
Previous studies (J. Appl. Physiol. 58: 978-988 and 989-995, 1985) have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during heavy exercise at sea level and during hypobaric hypoxia in a chamber [fractional inspired O2 concentration (FIO2) = 0.21, minimum barometric pressure (PB) = 429 Torr, inspired O2 partial pressure (PIO2) = 80 Torr]. We used the multiple inert gas elimination technique to compare gas exchange during exercise under normobaric hypoxia (FIO2 = 0.11, PB = 760 Torr, PIO2 = 80 Torr) with earlier hypobaric measurements. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate (HR), minute ventilation, respiratory rate (RR), and blood temperature were recorded at rest and during steady-state exercise in 10 normal subjects in the following order: rest, air; rest, 11% O2; light exercise (75 W), 11% O2; intermediate exercise (150 W), 11% O2; heavy exercise (greater than 200 W), 11% O2; heavy exercise, 100% O2 and then air; and rest 20 minutes postexercise, air. VA/Q inequality increased significantly during hypoxic exercise [mean log standard deviation of perfusion (logSDQ) = 0.42 +/- 0.03 (rest) and 0.67 +/- 0.09 (at 2.3 l/min O2 consumption), P less than 0.01]. VA/Q inequality was improved by relief of hypoxia (logSDQ = 0.51 +/- 0.04 and 0.48 +/- 0.02 for 100% O2 and air breathing, respectively). Diffusion limitation for O2 was evident at all exercise levels while breathing 11% O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Previous studies have shown that normal arterial PCO2 can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main stem bronchi, although this constant-flow ventilation (CFV) was also associated with a significant increase in ventilation-perfusion (VA/Q) inequality, compared with conventional mechanical ventilation (IPPV). Conceivably, this VA/Q inequality might result from differences in VA/Q ratios among lobes caused by nonuniform distribution of ventilation, even though individual lobes are relatively homogeneous. Alternatively, the VA/Q inequality may occur at a lobar level if those factors causing the VA/Q mismatch also existed within lobes. We compared the efficiency of gas exchange simultaneously in whole lung and left lower lobe by use of the multiple inert gas elimination technique in nine anesthetized open-chest dogs. Measurements of whole lung and left lower lobe gas exchange allowed comparison of the degree of VA/Q inequality within vs. among lobes. During IPPV with positive end-expiratory pressure, arterial PO2 and PCO2 (183 +/- 41 and 34.3 +/- 3.1 Torr, respectively) were similar to lobar venous PO2 and PCO2 (172 +/- 64 and 35.7 +/- 4.1 Torr, respectively; inspired O2 fraction = 0.44 +/- 0.02). Switching to CFV (3 l.kg-1.min-1) decreased arterial PO2 (112 +/- 26 Torr, P less than 0.001) and lobar venous PO2 (120 +/- 27 Torr, P less than 0.01) but did not change the shunt measured with inert gases (P greater than 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Constant-flow ventilation (CFV) is achieved by delivering a constant stream of inspiratory gas through cannulas aimed down the main stem bronchi at flow rates totaling 1-3 l.kg-1.min-1 in the absence of tidal lung motion. Previous studies have shown that CFV can maintain a normal arterial PCO2, although significant ventilation-perfusion (VA/Q) inequality appears. This VA/Q mismatch could be due to regional differences in lung inflation that occur during CFV secondary to momentum transfer from the inflowing stream to resident gas in the lung. We tested the hypothesis that substitution of a gas with lower density might attenuate regional differences in alveolar pressure and reduce the VA/Q inequality during CFV. Gas exchange was studied in seven anesthetized dogs by the multiple inert gas elimination technique during ventilation with intermittent positive-pressure ventilation, CFV with O2-enriched nitrogen (CFV-N2), or CFV with O2-enriched helium (CFV-He). As an index of VA/Q inequality independent of shunt, the log SD blood flow increased from 0.757 +/- 0.272 during intermittent positive-pressure ventilation to 1.54 +/- 0.36 (P less than 0.001) during CFV-N2. Switching from CFV-N2 to CFV-He at the same flow rate did not improve log SD blood flow (1.45 +/- 0.21) (P greater than 0.05) but tended to increase arterial PCO2. In excised lungs with alveolar capsules attached to the pleural surface, CFV-He significantly reduced alveolar pressure differences among lobes compared with CFV-N2 as predicted. Regional alveolar washout of Ar after a stap change of inspired concentration was slower during CFV--He than during CFV-N2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The relative roles of ventilation-perfusion (VA/Q) inequality, alveolar-capillary diffusion resistance, postpulmonary shunt, and gas phase diffusion limitation in determining arterial PO2 (PaO2) were assessed in nine normal unacclimatized men at rest and during bicycle exercise at sea level and three simulated altitudes (5,000, 10,000, and 15,000 ft; barometric pressures = 632, 523, and 429 Torr). We measured mixed expired and arterial inert and respiratory gases, minute ventilation, and cardiac output. Using the multiple inert gas elimination technique, PaO2 and the arterial O2 concentration expected from VA/Q inequality alone were compared with actual values, lower measured PaO2 indicating alveolar-capillary diffusion disequilibrium for O2. At sea level, alveolar-arterial PO2 differences were approximately 10 Torr at rest, increasing to approximately 20 Torr at a metabolic consumption of O2 (VO2) of 3 l/min. There was no evidence for diffusion disequilibrium, similar results being obtained at 5,000 ft. At 10 and 15,000 ft, resting alveolar-arterial PO2 difference was less than at sea level with no diffusion disequilibrium. During exercise, alveolar-arterial PO2 difference increased considerably more than expected from VA/Q mismatch alone. For example, at VO2 of 2.5 l/min at 10,000 ft, total alveolar-arterial PO2 difference was 30 Torr and that due to VA/Q mismatch alone was 15 Torr. At 15,000 ft and VO2 of 1.5 l/min, these values were 25 and 10 Torr, respectively. Expected and actual PaO2 agreed during 100% O2 breathing at 15,000 ft, excluding postpulmonary shunt as a cause of the larger alveolar-arterial O2 difference than accountable by inert gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Previous work by Lehnert et al. (J. Appl. Physiol. 53:483-489, 1982) has demonstrated that adequate alveolar ventilation can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main-stem bronchi. Because an asymmetric distribution of ventilation might introduce ventilation-perfusion (VA/Q) inequality, we compared gas exchange efficiency in nine anesthetized and paralyzed dogs during constant-flow ventilation (CFV) and conventional ventilation (intermittent positive-pressure ventilation, IPPV). Gas exchange was assessed using the multiple inert gas elimination technique. During CFV at 3 l X kg-1 X min-1, lung volume, retention-excretion differences (R-E*) for low- and medium-solubility gases, and the log standard deviation of blood flow (log SD Q) increased, compared with the findings during IPPV. Reducing CFV flow rate to 1 l X kg-1 X min-1 at constant lung volume improved R-E* and log SD Q, but significant VA/Q inequality compared with that at IPPV remained and arterial PCO2 rose. Comparison of IPPV and CFV at the same mean lung volume showed a similar reversible deterioration in gas exchange efficiency during CFV. We conclude that CFV causes significant VA/Q inequality which may be due to nonuniform ventilation distribution and a redistribution of pulmonary blood flow.  相似文献   

9.
To investigate the effects of both exercise and acute exposure to high altitude on ventilation-perfusion (VA/Q) relationships in the lungs, nine young men were studied at rest and at up to three different levels of exercise on a bicycle ergometer. Altitude was simulated in a hypobaric chamber with measurements made at sea level (mean barometric pressure = 755 Torr) and at simulated altitudes of 5,000 (632 Torr), 10,000 (523 Torr), and 15,000 ft (429 Torr). VA/Q distributions were estimated using the multiple inert gas elimination technique. Dispersion of the distributions of blood flow and ventilation were evaluated by both loge standard deviations (derived from the VA/Q 50-compartment lung model) and three new indices of dispersion that are derived directly from inert gas data. Both methods indicated a broadening of the distributions of blood flow and ventilation with increasing exercise at sea level, but the trend was of borderline statistical significance. There was no change in the resting distributions with altitude. However, with exercise at high altitude (10,000 and 15,000 ft) there was a significant increase in dispersion of blood flow (P less than 0.05) which implies an increase in intraregional inhomogeneity that more than counteracts the more uniform topographical distribution that occurs. Since breathing 100% O2 at 15,000 ft abolished the increased dispersion, the greater VA/Q mismatching seen during exercise at altitude may be related to pulmonary hypertension.  相似文献   

10.
Mechanism of exercise-induced hypoxemia in horses   总被引:1,自引:0,他引:1  
Arterial hypoxemia has been reported in horses during heavy exercise, but its mechanism has not been determined. With the use of the multiple inert gas elimination technique, we studied five horses, each on two separate occasions, to determine the physiological basis of the hypoxemia that developed during horizontal treadmill exercise at speeds of 4, 10, 12, and 13-14 m/s. Mean, blood temperature-corrected, arterial PO2 fell from 89.4 Torr at rest to 80.7 and 72.1 Torr at 12 and 13-14 m/s, respectively, whereas corresponding PaCO2 values were 40.3, 40.3, and 39.2 Torr. Alveolar-arterial PO2 differences (AaDO2) thus increased from 11.4 Torr at rest to 24.9 and 30.7 Torr at 12 and 13-14 m/s. In 8 of the 10 studies there was no change in ventilation-perfusion (VA/Q) relationships with exercise (despite bronchoscopic evidence of airway bleeding in 3) and total shunt was always less than 1% of the cardiac output. Below 10 m/s, the AaDO2 was due only to VA/Q mismatch, but at higher speeds, diffusion limitation of O2 uptake was increasingly evident, accounting for 76% of the AaDO2 at 13-14 m/s. Most of the exercise-induced hypoxemia is thus the result of diffusion limitation with a smaller contribution from VA/Q inequality and essentially none from shunting.  相似文献   

11.
Effect of common dead space on VA/Q distribution in the dog   总被引:1,自引:0,他引:1  
Several previous studies have shown worsening ventilation-perfusion (VA/Q) relationships in humans during heavy exercise at sea level. However, the mechanism of this deterioration remains unclear because of the correlation with ventilatory and circulatory variables. Our hypothesis was that the decrease in the series dead space-to-tidal volume ratio during exercise might be partly responsible because mixing in the common dead space can reduce apparent inequality. We tested this notion in 10 resting anesthetized normocapnic dogs passively hyperventilated by increase tidal volume and a) inspired CO2 or b) external dead space. We predicted less apparent VA/Q inequality in condition b because of mixing in the added dead space. After base-line measurements, conditions a and b were randomly assigned, and after a second set of base-line measurements they were repeated in the reverse order in each dog. VA/Q inequality was measured by the multiple inert gas elimination technique. Comparison of conditions a and b demonstrated that additional external dead space improved (P less than 0.001) the blood flow distributions as hypothesized [log standard deviation of perfusion = 0.49 +/- 0.02 (SE) in condition b and 0.61 +/- 0.03 in condition a with respect to 0.52 +/- 0.03 at base line]. This study suggests that the increased tidal volume during exercise could uncover VA/Q inequality not evident at rest because of the higher ratio of common dead space to tidal volume at rest.  相似文献   

12.
Gas exchange abnormalities after pneumonectomy in conditioned foxhounds   总被引:2,自引:0,他引:2  
Loss of a major portion of lung tissue has been associated with impaired exercise capacity, but the underlying mechanisms are not well defined. We studied the alterations in gas exchange during exercise before and after left pneumonectomy in three conditioned foxhounds. After pneumonectomy, minute ventilation and O2 consumption at comparable submaximal work loads were unchanged but arterial PCO2 at any work load was higher, implying that ventilatory response to CO2 was impaired. Arterial hypoxemia and an elevated alveolar-arterial O2 tension difference (AaDO2) developed during heavy exercise. Using the multiple inert gas elimination technique, we determined the distributions of ventilation-perfusion (VA/Q) ratios postpneumonectomy. Significant increase in VA/Q inequality developed during exercise while the foxhounds were breathing room air, accounting for an average of 42% of the total increase in AaDO2 while diffusion limitation accounted for 58%. While the animals were breathing hypoxic gas mixture, diffusion limitation accounted for an average of 88% of the total increase AaDO2. Cardiac output and O2 delivery were reduced at a given O2 consumption after pneumonectomy. After pneumonectomy, the animals reached O2 consumptions close to the maximum expected for normal dogs. Compensation for the impairment in O2 delivery post-pneumonectomy occurred mainly by an increase in hemoglobin concentration. Training probably played an important role in returning exercise capacity toward prepneumonectomy levels. We conclude that significant abnormalities in gas exchange develop during exercise after loss of 42% of lung tissue, but the animals demonstrate a remarkable ability to compensate for these changes.  相似文献   

13.
The supine pulmonary venous admixture (shunt) has been measured at Cerro de Pasco, 4,350 m altitude in eight subjects native to high altitude (HAN) under resting condition. Alveolar-arterial O2 tension difference (AaDO2) was also determined at rest and during exercise. The same subjects were studied again after 10 days' sojourn at sea level in Lima at 150 m altitude. They were compared with four subjects from sea level (SLN) who were studied first at Lima and after 2 and 10 days at Cerro de Pasco. At altitude, AaDO2 was smaller in HAN than SLN both at rest and during exercise. Shunt was the same in both groups. It is concluded that HAN show more even ventilation/perfusion relationship (VA/Q) at altitude, probably due to their high pulmonary artery pressure. On the contrary, SLN show less even VA/Q on altitude exposure, since their shunt decreased 37%. At sea level, HAN increased their AaDO2 due partially to an increase of 110% in their shunt, and in part due to less even VA/Q as shown by augmented VD/VT ratios. Each group tended to have a more effective gas exchange in its own environment.  相似文献   

14.
Water immersion can cause airways closure during tidal breathing, and his may result in areas of low ventilation-perfusion (VA/Q) ratios (VA/Q less than or equal to 0.1) and/or shunt and, ultimately, hypoxemia. We studied this in 12 normal males: 6 young (Y; aged 20-29 yr) with closing volume (CV) less than expiratory reserve volume (ERV), and six older (O; aged 40-54 yr) with CV greater than ERV during seated head-out immersion. Arterial and expired inert gas concentrations and dye-dilution cardiac output (Q) were measured before and at 2, 5, 10, 15, and 20 min in 35 degrees C water. During immersion, Y showed increases in expired minute ventilation (VE; 8.3-10.3 l/min), Q (6.1-8.2 l/min), and arterial PO2 (PaO2; 91-98 Torr; P less than or equal to 0.05). However, O2 uptake (VO2), shunt, amount of low-VA/Q areas (% of Q), and the log standard deviation of the perfusion distribution (log SDQ) were unchanged. During immersion, O showed increases in shunt (0.6-1.8% of Q), VE (8.5-11.4 l/min), and VO2 (0.31-0.40 l/min) but showed no change in low-VA/Q areas, log SDQ, Q, or PaO2. Throughout, O showed more VA/Q inequality (greater log SDQ) than Y (O, 0.69 vs. Y, 0.47).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The pulmonary responses and changes in plasma acid-base status occurring across the inactive forearm muscle were examined after 30 s of intense exercise in six male subjects exercising on an isokinetic cycle ergometer. Arterial and deep forearm venous blood were sampled at rest and during 10 min after exercise; ventilation and pulmonary gas exchange variables were measured breath by breath during exercise and recovery. Immediately after exercise, ventilation and CO2 output increased to 124 +/- 17 1/min and 3.24 +/- 0.195 l/min, respectively. The subsequent decrease in CO2 output was slower than the decrease in O2 intake (half time of 105 +/- 15 and 47 +/- 4 s, respectively); the respiratory exchange ratio was greater than 1.0 throughout the 10 min of recovery. Arterial plasma concentrations of Na+, K+, and Ca2+ increased transiently after exercise. Arterial lactate ion concentration ([La-]) increased to 14-15 meq/l within 1.5 min and remained at this level for the rest of the study. Throughout recovery there was a positive arteriovenous [La-] difference of 4-5 meq/l, associated with an increase in the arteriovenous strong ion difference ([SID]) and by a large increase in the venous Pco2 and [HCO3-]. These findings were interpreted as indicating uptake of La- by the inactive muscle, leading to a fall in the muscle [SID] and increase in plasma [SID], associated with an increase in muscle PCO2. The venoarterial CO2 content difference was 38% greater than could be accounted for by metabolism of La- alone, suggesting liberation of CO2 stored in muscle, possibly as carbamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have recently described a new method for measuring distributions of ventilation-perfusion ratios (VA/Q) based on inert gas elimination. Here we report the initial application of the method in normal dogs and in dogs with pulmonary embolism, pulmonary edema, and pneumonia. Characteristic distributions appropriate to the known effects of each lesion were observed. Comparison with traditional indices of gas exchange revealed that the arterial PO2 calculated from the distributions agreed well with measured values, as did the shunts indicated by the method and by the arterial PO2 while breathing 100 per cent 02. Also the Bohr dead space closely matched the dispersion of ventilation in realtion to VA/Q. Assumptions made in the method were critically evaluated and appear justified. These include the existence of a steady state of gas exchange, an alveolar-end-capillary diffusion equilibration, and the fact that all of the observered VA/Q inequality occurs between gas exchange units in parallel. However, theoretical analysis suggests that the method can detect failure of diffusion equilbration across the blood-gas barrier should it exist. These results suggest that the method is well-suited to clinical investigation of patients with pulmonary disease.  相似文献   

17.
During short-term maximal exercise,horses have impaired pulmonary gas exchange, manifested by diffusionlimitation and arterial hypoxemia, without marked ventilation-perfusion(A/)inequality. Whether gas exchange deteriorates progressively duringprolonged submaximal exercise has not been investigated. Sixthoroughbred horses performed treadmill exercise at ~60% of maximaloxygen uptake until exhaustion (28-39 min). Multipleinert gas, blood-gas, hemodynamic, metabolic rate, and ventilatory datawere obtained at rest and 5-min intervals during exercise. Oxygenuptake, cardiac output, and alveolar-arterialPO2 gradient were unchanged after thefirst 5 min of exercise. Alveolar ventilation increased progressivelyduring exercise, from increased tidal volume and respiratory frequency,resulting in an increase in arterialPO2 and decrease in arterialPCO2. At rest there was minimal A/inequality, log SD of the perfusion distribution (logSD) = 0.20. This doubled by 5 min of exercise (logSD = 0.40) butdid not increase further. There was no evidence of alveolar-end-capillary diffusion limitation during exercise. However, there was evidence for gas-phase diffusion limitation at all time points, and enflurane was preferentially overretained. Horses maintainexcellent pulmonary gas exchange during exhaustive, submaximal exercise. AlthoughA/inequality is greater than at rest, it is less than observed in mostmammals and the effect on gas exchange is minimal.

  相似文献   

18.
We studied the roles of endothelins in determining ventilation (Va) and perfusion (Q) mismatch in a porcine model of acute pulmonary thromboembolism (APTE), using a nonspecific endothelin antagonist, tezosentan. Nine anesthetized piglets (approximately 23 kg) received autologous clots (approximately 20 g) via a central venous catheter at time = 0 min. The distribution of Va and Q at five different time points (-30, -5, 30, 60, 120 min) was mapped by fluorescent microspheres of 10 different colors. Five piglets (group 1) received tezosentan (courtesy of Actelion) starting at time = 40 min for 2 h, and four piglets (group 2) received only saline and served as control. Our results showed that, in all of the animals at 30 min following APTE but before tezosentan, the mean Va/Q was increased, as was Va/Q heterogeneity (log SD Va/Q), which represented a widening of its main peak. Afterwards, tezosentan attenuated the pulmonary hypertension in group 1 but also produced moderate systemic hypotension. However, it did not improve arterial PO2 or Va/Q mismatch. We concluded that endothelin antagonism had minimal impact on gas exchange following APTE and confirmed our earlier observation that the main mechanism for hypoxemia in APTE was due to the mechanical redistribution of pulmonary regional blood flow away from the embolized vessels, resulting in the creation of many divergent low and high Va/Q regions.  相似文献   

19.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

20.
Ventilation with higher fraction of inspired oxygen (F(I)O2) is one of the commonly-chosen strategies executed for treatment of hypoxemia during one lung ventilation (OLV) for thoracic surgery. In this study, we investigated the effect of F(I)O2 on pulmonary ventilation-perfusion (VA/Q) distribution during OLV. Six pigs, weighing 27 to 34 kg, were selected for this study. Following by a steady-state period, randomized administrations of F(I)O2 with 0.4, 0.6 and 1.0 were performed for 30 minutes at the right lateral decubitus position during OLV, while hemodynamic data and lung mechanics were simultaneously monitored. The VA/Q distributions of the lung(s) were assessed by the multiple inert gas elimination technique (MIGET). PaO2 at F(I)O2 of 100% was significantly reduced in OLV compared with two-lung ventilation (TLV) (522 +/- 104 vs. 653 +/- 21 mmHg; P < 0.001) at right lateral decubitus position. MIGET algorithms demonstrated a wider VA/Q distribution during OLV at F(I)O2 of 40%, as compared with distribution during TLV at F(I)O2 of 100%, but a bimodal perfusion distribution shifted to lower VA/Q component during OLV at F(I)O2 of 100%. There was an increase of pulmonary shunting in OLV, as compared with TLV at F(I)O2 of 100% (1.94 +/- 2.2% vs. 9.5 +/- 9.7%; P < 0.01). In addition, OLV caused a significant increase in the dispersion of perfusion at F(I)O2 of 100% (0.62 +/- 0.20 vs. 0.44 +/- 0.23; P < 0.01), but ventilation showed no denoting changes (1.06 +/- 0.20 vs. 0.98 +/- 0.35; P > 0.01). During OLV with right lateral decubitus position, there were no significant changes in the pulmonary shunt, the dispersion of perfusion and ventilation at different F(I)O2. OLV resulted in an increase in pulmonary shunting and heterogeneity compared with TLV. Furthermore, the PaO2 decreased during OLV regardless of the postural changes. At different F(I)O2, there were no significant changes in the pulmonary shunt, the dispersion of perfusion and ventilation during OLV with right lateral decubitus posture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号