首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1‐like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2–KZM3 heteromeric channel became slower than the KZM3 channel. Patch‐clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.  相似文献   

2.
The Arabidopsis thaliana cDNA, KAT1 encodes a hyperpolarization-activated K+ (K+ in ) channel. In the present study, we identify and characterize dominant negative point mutations that suppress K+ in channel function. Effects of two mutations located in the H5 region of KAT1, at positions 256 (T256R) and 262 (G262K), were studied. The co-expression of either T256R or G262K mutants with KAT1 produced an inhibition of K+ currents upon membrane hyperpolarization. The magnitude of this inhibition was dependent upon the molar ratio of cRNA for wild-type to mutant channel subunits injected. Inhibition of KAT1 currents by the co-expression of T256R or G262K did not greatly affect the ion selectivity of residual currents for Rb+, Na+, Li+, or Cs+. When T256R or G262K were co-expressed with a different K+ channel, AKT2, an inhibition of the channel currents was also observed. Voltage-dependent Cs+ block experiments with co-expressed wild type, KAT1 and AKT2, channels further indicated that KAT1 and AKT2 formed heteromultimers. These data show that AKT2 and KAT1 are able to co-assemble and suggest that suppression of channel function can be pursued in vivo by the expression of the dominant negative K + in channel mutants described here. Received: 2 July 1998/Revised: 23 October 1998  相似文献   

3.
The Arabidopsis thaliana KAT1, an inward-rectifying potassium channel, shares molecular features with the Shaker family of outward rectifier K+ channels. The KAT1 amino-acid sequence reveals the presence of a positively charged S4 and a segment containing the TXGYGD signature sequence in the pore (P) region. To test whether the inward-rectifying properties of KAT1 are due to reverse orientation in the membrane, such that the voltage sensor is oriented in the opposite direction of the electric field compared with the Shaker K+ channel, we have inserted a flag epitope in the NH2 terminus or the S3–S4 loop. The KAT1 and tagged constructs expressed functional channels in whole cells, Xenopus oocytes and COS-7. The electrophysiological properties of both tagged constructs were similar to those of the wild type. Immunofluorescence with an antibody against the flag epitope and an anti-C terminal KAT1 determined the membrane localization of these epitopes and the orientation of the KAT1 channel in the membrane. Our data confirm that KAT1 in eukaryotic cells has an orientation similar to the Shaker K+ channel.  相似文献   

4.
KAT1‐type channels mediate K+ influx into guard cells that enables stomatal opening. In this study, a KAT1‐type channel AmKAT1 was cloned from the xerophyte Ammopiptanthus mongolicus. In contrast to most KAT1‐type channels, its activation is strongly dependent on external K+ concentration, so it can be used as a model to explore the mechanism for the K+‐dependent gating of KAT1‐type channels. Domain swapping between AmKAT1 and KAT1 reveals that the S5–pore–S6 region controls the K+ dependence of AmKAT1, and residue substitutions show that multiple residues within the S5–Pore linker and Pore are involved in its K+‐dependent gating. Importantly, complex interactions occur among these residues, and it is these interactions that determine its K+ dependence. Finally, we analyzed the potential mechanism for the K+ dependence of AmKAT1, which could originate from the requirement of K+ occupancy in the selectivity filter to maintain its conductive conformation. These results provide new insights into the molecular basis of the K+‐dependent gating of KAT1‐type channels.  相似文献   

5.
Stomatal opening is the result of K+-salt accumulation in guard cells. Potassium uptake in these motor cells is mediated by voltage-dependent, K+-selective ion channels. Here we compare the in-vitro properties of two guard-cell K+-channel α-subunits from Arabidopsis thaliana (L.) Heynh. (KAT1) and Solanum tuberosum L. (KST1) after heterologous expression with the respective K+-transport characteristics in their mother cell. The KAT1 and KST1 subunits when expressed in Xenopus oocytes shared the basic features of the K+-uptake channels in the corresponding guard cells, including voltage dependence and single-channel conductance. Besides these similarities, the electrophysiological comparison of K+ channels in the homologous and the heterologous expression systems revealed pronounced differences with respect to modulation and block by extracellular cations. In the presence of 1 mM Cs+, 50% of the guard-cell K+-uptake channels (GCKC1in) in A. thaliana and S. tuberosum, were inhibited upon hyperpolarization to −90 mV. For a similar effect on KAT1 and KST1 in oocytes, voltages as negative as −155 mV were required. In contrast, compared to the K+ channels in vivo the functional α-subunit homomers almost lacked a voltage-dependent block by extracellular Ca2+. Similar to the block by Cs+ and Ca2+, the acid activation of the α-homomers was less pronounced in oocytes. Upon acidification the voltage-dependence shifted by 82 and 90 mV for GCKCLin in A. thaliana and S. tuberosum, respectively, but only by 25 mV for KAT1 and KST1. From the differences in K+-channel modulation in vivo and after heterologous expression we conclude that the properties of functional guard-cell K+-uptake channels result either from the heterometric assembly of different α-subunits or evolve from cell-type-specific posttranslational modification. Received: 6 March 1998 / Accepted: 9 July 1998  相似文献   

6.
Inward-rectifying potassium channels in plant cells provide important mechanisms for low-affinity K+ uptake and membrane potential control in specific cell types, including guard cells, pulvinus cells, aleurone cells and root hair cells. K+ channel blockers are potent tools for studying the physiological functions and structural properties of K+ channels. In the present study the structural and biophysical mechanisms of Cs+ and TEA+ block of a cloned Arabidopsis inward-rectifying K+ channel (KAT1) were analyzed. Effects of the channel blockers Cs+ and TEA+ were characterized both extracellularly and intracellularly. Both external Cs+ and TEA+ block KAT1 currents. A mutant of KAT1 (``m2KAT1'; H267T, E269V) was produced by site-directed mutagenesis of two amino acid residues in the C-terminal portion of the putative pore (P) domain. This mutant channel was blocked less by external Cs+ and TEA+ than the wild-type K+ channel. Internal TEA+ and Cs+ did not significantly block either m2KAT1 or KAT1 channels. Other properties, such as cation selectivity, voltage-dependence and proton activation did not show large changes between m2KAT1 and KAT1, demonstrating the specificity of the introduced mutations. These data suggest that the amino acid positions mutated in the inward-rectifying K+ channel, KAT1, are accessible to external blockers and may be located on the external side of the membrane, as has been suggested for outward-rectifying K+ channels. Received: 31 July 1995/Revised: 5 January 1996  相似文献   

7.
C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-free solutions, although they show no measurable ionic currents in physiological solutions. In addition, it appears that the effective block of ion conduction produced by the mutation W434F in the pore region may be associated with permanent C-type inactivation of W434F channels. These conclusions predict that permanently C-type inactivated W434F channels would also show Na+ and Li+ currents (in K+-free solutions) with kinetics similar to those seen in C-type-inactivated Shaker channels. This paper confirms that prediction and demonstrates that activation and deactivation parameters for this mutant can be obtained from macroscopic ionic current measurements. We also show that the prolonged Na+ tail currents typical of C-type inactivated channels involve an equivalent prolongation of the return of gating charge, thus demonstrating that the kinetics of gating charge return in W434F channels can be markedly altered by changes in ionic conditions.  相似文献   

8.
Xylem parenchyma cells are situated around the (apoplastic) xylem vessels and are involved in the control of the composition of the xylem sap by exporting and resorbing solutes. We investigated properties of the K+ inward rectifier in the plasma membrane of these cells by performing patch clamp experiments on protoplasts in the whole-cell configuration. Inward currents were sensitive to the K+ channel blocker TEA+ at a high concentration (20 mm). Barium, another classical K+ channel blocker, inhibited K+ currents with a K i of about 1.3 mm. In contrast to guard cells, the cytosolic Ca2+ level proved to be ineffective in regulating the K+ conductance at hyperpolarization. External Ca2+ blocked currents weakly in a voltage-dependent manner. From instantaneous current-voltage curves, we identified a binding site in the channel pore with an electrical distance of about 0.2 to 0.5. Lanthanum ions reduced the inward current in a voltage-dependent manner and simultaneously displaced the voltage at which half of the channels are in the open state to more positive values. This finding was interpreted as resulting from a sum of two molecular effects, an interaction with the mouth of the channel that causes a reduction of current, and a binding to the voltage sensor, leading to a shielding of surface charges and, subsequently, a modulation of channel gating.A comparison between the K+ inward rectifier in xylem parenchyma cells, guard cells and KAT1 from Arabidopsis leads to the conclusion that these rectifiers form subtypes within one class of ion channels. The ineffectiveness of Ca2+ to control K+ influx in xylem parenchyma cells is interpreted in physiological terms.  相似文献   

9.
The interpretation of slow inactivation in potassium channels has been strongly influenced by work on C-type inactivation in Shaker channels. Slow inactivation in Shaker and some other potassium channels can be dramatically modulated by the state of the pore, including mutations at outer pore residue T449, which altered inactivation kinetics up to 100-fold. KV2.1, another voltage-dependent potassium channel, exhibits a biophysically distinct inactivation mechanism with a U-shaped voltage-dependence and preferential closed-state inactivation, termed U-type inactivation. However, it remains to be demonstrated whether U-type and C-type inactivation have different molecular mechanisms. This study examines mutations at Y380 (homologous to Shaker T449) to investigate whether C-type and U-type inactivation have distinct molecular mechanisms, and whether C-type inactivation can occur at all in KV2.1. Y380 mutants do not introduce C-type inactivation into KV2.1 and have little effect on U-type inactivation of KV2.1. Interestingly, two of the mutants tested exhibit twofold faster recovery from inactivation compared to wild-type channels. The observation that mutations have little effect suggests KV2.1 lacks C-type inactivation as it exists in Shaker and that C-type and U-type inactivation have different molecular mechanisms. Kinetic modeling predicts that all mutants inactivate preferentially, but not exclusively, from partially activated closed states. Therefore, KV2.1 exhibits a single U-type inactivation process including some inactivation from open as well as closed states.  相似文献   

10.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

11.
KAT1 is a cloned voltage-gated K+ channel from the plant Arabidopsis thaliana L., which displays an inward rectification reminiscent of `anomalous' rectification of the i f pacemaker current recorded in animal cells. Macroscopic conductance of KAT1 expressed in Xenopus oocytes was 5-fold less in pure Rb+ solution than in pure K+ solution, and negligible in pure Na+ solution. Experiments in different K+/Na+ or K+/Rb+ mixtures revealed deviations from the principle of independence and notably two anomalous effects of the K+/Rb+ mole fraction (i.e., the ratio [K+]/([K+]+[Rb+])). First, the KAT1 deactivation time constant was both voltage- and mole fraction-dependent (a so-called `foot in the door' effect was thus observed in KAT1 channel). Second, when plotted against the K+/Rb+ mole fraction, KAT1 conductance values passed through a minimum. This minimum is more important for two pore mutants of KAT1 (T259S and T260S) that displayed an increase in PRb/PK. These results are consistent with the idea that KAT1 conduction requires several ions to be present simultaneously within the pore. Therefore, this atypical `green' member of the Shaker superfamily of K+ channels further shows itself to be an interesting model as well for permeation as for gating mechanism studies. Received: 9 February 1998/Revised: 28 July 1998  相似文献   

12.
Potassium channels in plants play a variety of important physiological roles including K+ uptake into roots, stomatal and leaf movements, and release of K+ into the xylem. This review summarizes current knowledge about a class of plant genes whose products are K+ channel-forming proteins. Potassium channels of this class belong to a superfamily characterized by six membrane-spanning domains (S1-6), a positively charged S4 domain and a region between the S5 and S6 segments that forms the channel selectivity filter. These channels are voltage dependent, which means the membrane potential modifies the probability of opening (Po). However, despite these channels sharing the same topology as the outward-rectifying K+ channels, which are activated by membrane depolarization, some plant K+ channels such as KAT1/2 and KST1 open with hyperpolarizing voltages. In outward-rectifying K+ channels, the change in Po is achieved through a voltage sensor formed by the S4 segment that detects the voltage transferring its energy to the gate that controls pore opening. This coupling is achieved by an outward displacement of the charges contained in S4. In KAT1, most of the results indicate that S4 is the voltage sensor. However, how the movement of S4 leads to opening remains unanswered. On the basis of recent data, we propose here that in plant-inward rectifiers an inward movement of S4 leads to channel opening and that the difference between it and outward-rectifying channels resides in the mechanism that couples gating charge displacement with pore opening.  相似文献   

13.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

14.
15.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

16.
Dihydropyridines (DHPs) are well known for their effects on L-type voltage-dependent Ca2+ channels. However, these drugs also affect other voltage-dependent ion channels, including Shaker K+ channels. We examined the effects of DHPs on the Shaker K+ channels expressed in Xenopus oocytes. Intracellular applications of DHPs quickly and reversibly induced apparent inactivation in the Shaker K+ mutant channels with disrupted N- and C-type inactivation. We found that DHPs interact with the open state of the channel as evidenced by the decreased mean open time. The DHPs effects are voltage-dependent, becoming more effective with hyperpolarization. A model which involves binding of two DHP molecules to the channel is consistent with the results obtained in our experiments.  相似文献   

17.
There is growing evidence indicating that the pore structure of voltage-gated ion channels (VGICs) influences gating besides their conductance. Regarding low voltage-activated (LVA) Ca2+ channels, it has been demonstrated that substitutions of the pore aspartate (D) by a glutamate (D-to-E substitution) in domains III and IV alter channel gating properties such as a positive shift in the channel activation voltage dependence. In the present report, we evaluated the effects of E-to-D substitution in domains I and II on the CaV3.1 channel gating properties. Our results indicate that substitutions in these two domains differentially modify the gating properties of CaV3.1 channels. The channel with a single mutation in domain I (DEDD) presented slower activation and faster inactivation kinetics and a slower recovery from inactivation, as compared with the WT channel. In contrast, the single mutant in domain II (EDDD) presented a small but significant negative shift of activation voltage dependence with faster activation and slower inactivation kinetics. Finally, the double mutant channel (DDDD) presented somehow intermediate properties with respect to the two single mutants but with fastest deactivation kinetics. Overall, our results indicate that single amino acid modification of the selectivity filter of LVA Ca2+ channels in distinct domains differentially influence their gating properties, supporting a pore pseudo-symmetry.  相似文献   

18.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

19.
Abnormalities in repolarization of the cardiac ventricular action potential can lead to life-threatening arrhythmias associated with long QT syndrome. The repolarization process depends upon the gating properties of potassium channels encoded by the human ether-à-go-go–related gene (HERG), especially those governing the rate of recovery from inactivation and the rate of deactivation. Previous studies have demonstrated that deletion of the NH2 terminus increases the deactivation rate, but the mechanism by which the NH2 terminus regulates deactivation in wild-type channels has not been elucidated. We tested the hypothesis that the HERG NH2 terminus slows deactivation by a mechanism similar to N-type inactivation in Shaker channels, where it binds to the internal mouth of the pore and prevents channel closure. We found that the regulation of deactivation by the HERG NH2 terminus bears similarity to Shaker N-type inactivation in three respects: (a) deletion of the NH2 terminus slows C-type inactivation; (b) the action of the NH2 terminus is sensitive to elevated concentrations of external K+, as if its binding along the permeation pathway is disrupted by K+ influx; and (c) N-ethylmaleimide, covalently linked to an aphenotypic cysteine introduced within the S4–S5 linker, mimics the N deletion phenotype, as if the binding of the NH2 terminus to its receptor site were hindered. In contrast to N-type inactivation in Shaker, however, there was no indication that the NH2 terminus blocks the HERG pore. In addition, we discovered that separate domains within the NH2 terminus mediate the slowing of deactivation and the promotion of C-type inactivation. These results suggest that the NH2 terminus stabilizes the open state and, by a separate mechanism, promotes C-type inactivation.  相似文献   

20.
Missense mutations at arginine residues in the S4 voltage-sensor domains of NaV1.4 are an established cause of hypokalemic periodic paralysis, an inherited disorder of skeletal muscle involving recurrent episodes of weakness in conjunction with low serum K+. Expression studies in oocytes have revealed anomalous, hyperpolarization-activated gating pore currents in mutant channels. This aberrant gating pore conductance creates a small inward current at the resting potential that is thought to contribute to susceptibility to depolarization in low K+ during attacks of weakness. A critical component of this hypothesis is the magnitude of the gating pore conductance relative to other conductances that are active at the resting potential in mammalian muscle: large enough to favor episodes of paradoxical depolarization in low K+, yet not so large as to permanently depolarize the fiber. To improve the estimate of the specific conductance for the gating pore in affected muscle, we sequentially measured Na+ current through the channel pore, gating pore current, and gating charge displacement in oocytes expressing R669H, R672G, or wild-type NaV1.4 channels. The relative conductance of the gating pore to that of the pore domain pathway for Na+ was 0.03%, which implies a specific conductance in muscle from heterozygous patients of ∼10 µS/cm2 or 1% of the total resting conductance.Unexpectedly, our data also revealed a substantial decoupling between gating charge displacement and peak Na+ current for both R669H and R672G mutant channels. This decoupling predicts a reduced Na+ current density in affected muscle, consistent with the observations that the maximal dV/dt and peak amplitude of the action potential are reduced in fibers from patients with R672G and in a knock-in mouse model of R669H. The defective coupling between gating charge displacement and channel activation identifies a previously unappreciated mechanism that contributes to the reduced excitability of affected fibers seen with these mutations and possibly with other R/X mutations of S4 of NaV, CaV, and KV channels associated with human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号