首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein inhibitor of nitric oxide synthase (PIN) was independently identified as an inhibitor of nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS), and as a member of the cellular dynein light chain family, dynein light chain 8 (LC8), responsible for intracellular protein trafficking. Mast cells (MC) are involved in several homeostatic and pathological processes and can be regulated by NO. This study describes the expression of PIN/LC8 in the human MC line HMC-1. We also studied if PIN/LC8 binds nNOS, and what role this might have in leukotriene (LT) production. We found that PIN/LC8 mRNA and protein was expressed in HMC-1. Using a GST-PIN construct, we showed PIN binds to nNOS, but not endothelial (e)NOS in HMC-1; in our studies HMC-1 did not express inducible (i)NOS. Intracellular delivery of anti-PIN/LC8 antibody enhanced ionophore (A23187)-induced LT production through an unknown mechanism. Thus we established for the first time expression of PIN/LC8 in human MC, its ability to bind nNOS, and the effect that blocking it has on LT production in a human MC lines.  相似文献   

2.
3.
The presence of nitric oxide synthase (EC 1.14.23 NOS) activity is demonstrated in the tropical marine cnidarian Aiptasia pallida (Verrill). Enzyme activity was assayed by measuring the conversion of [3H]arginine to [3H]citrulline. Optimal NOS activity was found to require NADPH. Activity was inhibited by the competitive NOS inhibitor NG-methyl- -arginine ( -NMA), but not the arginase inhibitors -valine and -ornithine. NOS activity was predominantly cytosolic, and was characterised by a Km for arginine of 19.05 μM and a Vmax of 2.96 pmol/min per μg protein. Histochemical localisation of NOS activity using NADPH diaphorase staining showed the enzyme to be predominantly present in the epidermal cells and at the extremities of the mesoglea. These results provide a preliminary biochemical characterisation and histochemical localisation of NOS activity in A. pallida, an ecologically important sentinel species in tropical marine ecosystems.  相似文献   

4.
The present study was designed to investigate the expression of nitric oxide synthase (NOS) isoforms in buffalo ovarian preantral (PFs), antral (AFs) and ovulatory (OFs) follicles (Experiment 1); effect of NO on in vitro survival and growth of PFs (Experiment 2) and NOS activity in immature oocytes by NADPH-diaphorase test (Experiment 3). In Experiment 1, NOS isoforms (neuronal, inducible and endothelial) were localized immunohistochemically; mRNA and protein expression was analyzed by semi-quantitative RT-PCR and western blot, respectively. In Experiment 2, PFs were isolated by micro-dissection method from buffalo ovaries and cultured in 0 (control), 10−3, 10−5, 10−7 and 10−9 M sodium nitroprusside (SNP). PFs were further cultured with 10−5 M SNP + 1.0 mM Nω-nitro-L-arginine methyl ester (L-NAME) or 1.0 μg/ml hemoglobin (Hb) to examine the reversible effect of SNP. Immunohistochemical studies demonstrated that inducible nitric oxide synthase (iNOS) immunoreactivity was predominantly localized in granulosa and theca cells whereas, neuronal (nNOS) and endothelial (eNOS) nitric oxide synthase in the theca, granulosa and cumulus cells of PFs, AFs and OFs. The amount of mRNA as well as protein of nNOS and eNOS was found similar between different stages of follicles. In contrast, higher level of iNOS mRNA was observed in OFs and protein in the AFs. Higher doses of SNP (10−3, 10−5, 10−7 M) inhibited (P < 0.05) while, lower dose of SNP (10−9 M) stimulated (P < 0.05) the survival, growth, and antrum formation of PFs. The inhibitory effects of SNP were reversed by Hb, while L-NAME was not found effective. In conclusion, expression of NOS isoforms mRNA and protein in PFs, AFs, and OFs and NOS enzyme activity in immature follicular oocytes suggest a role for NO during ovarian folliculogenesis in buffalo. NO plays a dual role on growth and survival of PFs depending on its concentration in the culture medium.  相似文献   

5.
Nitric oxide (NO) is an ubiquitous intercellular messenger molecule synthesised from the amino acid arginine by the enzyme nitric oxide synthase (NOS). A number of NOS iso-enzymes have been identified, varying in molecular size, tissue distribution and possible biological role. To further understand the role of NO in the regulation of neuroendocrine function in the sheep, we have purified and characterised ovine neuronal NOS (nNOS) using anion exchange, affinity and size-exclusion chromatography. SDS-PAGE reveals that ovine nNOS has an apparent denatured molecular weight of 150 kDa which correlates well with the other purified nNOS forms such as rat, bovine and porcine. The native molecular weight predicted by size-exclusion chromatography was 200 kD which is in close agreement with that found for porcine and rat nNOS. Internal amino acid sequences generated from tryptic digests of the purified ovine nNOS are highly homologous to rat nNOS. There was no significant difference in the cofactor dependence and kinetic characteristics of ovine nNOS when compared to rat and bovine nNOS, (Km for arginine 2.8, 2.0 and 2.3 μM respectively). A polyclonal anti-peptide antibody directed toward the C-terminal end of the rat nNOS sequence showed full cross-reactivity with the purified ovine nNOS. Immunohistochemical and Western analysis using this antiserum demonstrate the expression of nNOS in the cortex, cerebellum, hypothalamus and pituitary of the sheep. The lack of staining in the neural and anterior lobes of the pituitary seems to suggest that NOS plays a varied role in the control of endocrine systems between species.  相似文献   

6.
This study was conducted to demonstrate the involvement of nitric oxide synthase (NOS) in the early-phase isoflurane-induced hypotension and to ascertain whether this NOS is neuronal NOS (nNOS) or endothelial NOS (eNOS). Mean arterial pressures (MAPs) were directly measured from the femoral arteries of urethane-anesthetized rats. Isoflurane-induced changes in MAP were monitored in rats following pretreatment with vehicle or one of the following NOS inhibitors: L-NG-monomethyl-L-arginine (L-NMMA), which is non-selective; L-NG-nitro arginine (L-NOARG), which is more selective for nNOS and eNOS; and 7-nitroindazole (7-NI), which is selective for nNOS. Exposure to 2% isoflurane in oxygen produced a triphasic reduction in MAP, including an early phase in which mean arterial pressure (MAP) fell by 25-30% during the initial 2½ min. This early hypotensive response, but not subsequent phases, was abolished by i.v. pretreatment with either L-NMMA or L-NOARG. The early-phase hypotension was also significantly attenuated by i.p. pretreatment with 7-NI; however, the blockade was not as complete as with L-NMMA or L-NOARG. Cerebella and aorta were removed from vehicle- and 7-NI pretreated rats and assayed for NOS activity by determining the conversion of [14C]L-arginine to [14C]L-citrulline. The 7-NI pretreatment significantly reduced NOS activity in the cerebellum but not the aorta. These findings indicate that the early-phase isoflurane-induced hypotension may involve nNOS as well as eNOS. The nNOS may participate in regulation of isoflurane-induced neuronal release of endogenous opioid peptide, which produces a vasodilation that is dependent on NO derived from an action of eNOS.  相似文献   

7.
Since nitric oxide (NO) is synthesized by nitric oxide synthase (NOS) froml-arginine (Arg) which has an amidino group in its molecule, we, examined the effect of 29 kinds of Arg analogues on neuronal NOS (nNOS) activity in the rat brain. None of the Arg analogues acted as a substrate for nNOS. Diamidinocystamine, hirudonine, and guanethidine inhibited nNOS activity to 67.3%, 64.2% and 74.1%, respectively, but their inhibitory efficiency was lower than NG-monomethyl-l-arginine (to 36.5%) which is a well known NOS inhibitor. Dimethylguanidine and N-benzoylguanidine also significantly inhibited nNOS activity to 88.0% and 90.7%, respectively. Whereas almost all of the NOS inhibitors previously reported were synthesizdd by substituting the amidino nitrogen of Arg, none of these new inhibitors were substituted at this position. Furthermore, hirudonine, which is a naturally occurring compound, was thought to act as an agonist at polyamine binding site of the N-methyl-d-aspartate type of glutamate receptor complex. It is also interesting that guanethidine, an antihypertensive agent, inhibit nNOS activity. These new drugs are useful for the investigation not only of the chemical nature of nNOS but also of the physiologic function of NO.  相似文献   

8.
Cobalamins are important cofactors for methionine synthase and methylmalonyl-CoA mutase. Certain corrins also bind nitric oxide (NO), quenching its bioactivity. To determine if corrins would inhibit NO synthase (NOS), we measured their effects on -l-[14C]arginine-to-l-[14C]citrulline conversion by NOS1, NOS2, and NOS3. Hydroxocobalamin (OH-Cbl), cobinamide, and dicyanocobinamide (CN2-Cbi) potently inhibited all isoforms, whereas cyanocobalamin, methylcobalamin, and adenosylcobalamin had much less effect. OH-Cbl and CN2-Cbi prevented binding of the oxygen analog carbon monoxide (CO) to the reduced NOS1 and NOS2 heme active site. CN2-Cbi did not react directly with NO or CO. Spectral perturbation analysis showed that CN2-Cbi interacted directly with the purified NOS1 oxygenase domain. NOS inhibition by corrins was rapid and not reversed by dialysis with l-arginine or tetrahydrobiopterin. Molecular modeling indicated that corrins could access the unusually large heme- and substrate-binding pocket of NOS. Best fits were obtained in the “base-off” conformation of the lower axial dimethylbenzimidazole ligand. CN2-Cbi inhibited interferon-γ-activated Raw264.7 mouse macrophage NO production. We show for the first time that certain corrins directly inhibit NOS, suggesting that these agents (or their derivatives) may have pharmacological utility. Endogenous cobalamins and cobinamides might play important roles in regulating NOS activity under normal and pathological conditions.  相似文献   

9.
Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down‐regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild‐type and Cx43‐deficient (Cx43Cre‐ER(T)/fl) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine‐nucleotide‐translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co‐localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild‐type mice. In contrast, iNOS expression was increased in Cx43Cre‐ER(T)/fl mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43Cre‐ER(T)/fl mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild‐type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation.  相似文献   

10.
Crystal structures are reported for the endothelial nitric oxide synthase (eNOS)–arginine–CO ternary complex as well as the neuronal nitric oxide synthase (nNOS) heme domain complexed with l-arginine and diatomic ligands, CO or NO, in the presence of the native cofactor, tetrahydrobiopterin, or its oxidized analogs, dihydrobiopterin and 4-aminobiopterin. The nature of the biopterin has no influence on the diatomic ligand binding. The binding geometries of diatomic ligands to nitric oxide synthase (NOS) follow the {MXY} n formalism developed from the inorganic diatomic–metal complexes. The structures reveal some subtle structural differences between eNOS and nNOS when CO is bound to the heme which correlate well with the differences in CO stretching frequencies observed by resonance Raman techniques. The detailed hydrogen-bonding geometries depicted in the active site of nNOS structures indicate that it is the ordered active-site water molecule rather than the substrate itself that would most likely serve as a direct proton donor to the diatomic ligands (CO, NO, as well as O2) bound to the heme. This has important implications for the oxygen activation mechanism critical to NOS catalysis.  相似文献   

11.
Excessive production of nitric oxide (NO) by NO synthase (NOS) and a subsequent oxidative stress reaction are thought to be critically involved in the pathophysiology of sepsis. Previous studies suggested that NO production by neuronal NOS (nNOS) and inducible NOS (iNOS) is implemented in the disease process at different time points after the injury. Here we tested the roles of selective pharmacological inhibition of nNOS and iNOS at different time points in a murine model of pulmonary sepsis. The injury was induced by intranasal administration of live Pseudomonas aeruginosa (3.2 × 107 colony-forming units) in C57BL/6 wild-type mice. The animals received no treatment (control) or treatment with a specific nNOS inhibitor (4 or 8 h), iNOS inhibitor (4 or 8 h), or non-specific NOS inhibitor (4 or 8 h). In controls, the injury was associated with excessive releases of pro-inflammatory cytokines in the plasma, enhanced tissue lipid peroxidation, and decreased survival. Non-specific NOS inhibition at either time point did not influence survival and was not further investigated. While nNOS inhibition at 4 h was associated with a trend toward improved survival and significantly reduced contents of lung nitrite/nitrate (NOx) and liver malondialdehyde, the blockade of nNOS at 8 h had no effect on these parameters. In contrast, early iNOS inhibition was associated with a trend toward decreased survival and no effects on lung NOx and liver malondialdehyde contents, whereas later iNOS blockade was associated with decreased malondialdehyde content in liver homogenates. In conclusion, pulmonary sepsis in mice may be beneficially influenced by specific pharmacological nNOS inhibition at an earlier time point and iNOS inhibition at a later time points post-injury. Future investigations should identify the time changes of the expression and activation of NOS isoforms.  相似文献   

12.
Nitric oxide synthase (NOS) gene has been partially sequenced from Hyphantria cunea and compared with those already determined from insects. Hyphantria cunea NOS possesses putative recognition sites for co‐factors heme, BH4, CaM, FMN, FAD, and NADPH common to NOS. The deduced amino acid sequence of H. cunea NOS cDNA showed 70.3% identity to Manduca sexta NOS and 57.6–69.5% identity to NOS sequences from other insects. Nitric oxide synthase is expressed in all tissues of H. cunea, except in hemocytes. The NOS expression in midgut, fat body, epidermis, and Malpighian tubule strongly increased against Gram‐positive and Gram‐negative bacterial infection. These results suggest that NOS may play an important role in insect defense system against bacterial infection.  相似文献   

13.
Excised leaves of kidney bean (Phaseolus vulgaris) were used to investigate the mechanism of NO generation under UV-B stress. We showed that two signaling molecules, NO and H2O2, were produced in the irradiated leaves. NO release was blocked by LNNA, an inhibitor of NOS. Application of CAT (EC 1.11.1.6) not only effectively eliminated H2O2 in the leaves, but also inhibited the activity of NOS and the emission of NO. In contrast, treatment with exogenous H2O2 increased both of those events. Therefore, we suggest that, under UV-B stress, NO production is mediated by H2O2 through greater NOS activity.  相似文献   

14.
Nα-vanillyl-Nω-nitroarginine (N ? 1) that combines the active functions of natural antioxidant and nitric oxide synthase inhibitor was developed for its neuroprotective properties. N ? 1 exhibited protective effects against hydrogen peroxide-induced cell damage and the inhibitory effect on nitric oxide ‘NO’ production induced by calcium ionophore in NG 108-15 cells. N ? 1 inhibited the constitutive NOS isolated from rat cerebellar in a greater extent than constitutive NOS from human endothelial cells. Low binding energy ( ? 10.2 kcal/mol) obtained from docking N ? 1 to nNOS supported the additional mode of action of N ? 1 as an nNOS inhibitor. The in vivo neuroprotective effect on kainic acid-induced nitric oxide production and neuronal cell death in rat brain was investigated via microdialysis. Rats were injected intra-peritonially with N ? 1 at 75 μmol/kg before kainic acid injection (10 mg/kg). The significant suppression effect on kainic acid-induced NO and significant increase in surviving cells were observed in the hippocampus at 40 min after the induction.  相似文献   

15.
We previously reported the presence of nitric oxide synthase (NOS) in Staphylococcus aureus ATCC6538P whose activity was induced by methanol. In the present study, the methanol-induced NOS was purified 900-fold from S. aureus by means of Mono Q ion exchange column, 2',5'-ADP-agarose affinity column, and Superdex 200HR gel permeation column chromatography. The purified bacterial NOS showed two protein bands with 67 and 64 kDa molecular mass on SDS-PAGE. However, the molecular mass of the NOS was 135 kDa on Superdex 200HR gel permeation column chromatography, indicating that the native enzyme exists as a heterodimer. This bacterial NOS had K(m) value of 13.4x10(-6) M for L-arginine and V(max) of 35.3 nmol min(-1) mg(-1) protein. In addition, reduced nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide, flavin mononucleotide, tetrahydrobiopterin, calmodulin and Ca(2+) were required as cofactors in the conversion of L-arginine to L-citrulline, and NOS inhibitors selectively inhibited the activity of the purified NOS.  相似文献   

16.
The aim of the study was to investigate the interaction between nitric oxygenase (NOS)/nitric oxide (NO) and heme oxygenase (HO)/carbon monoxide (CO) system in the pathogenesis of recurrent febrile seizures (FS). On a rat model of recurrent FS, the ultrastructure of hippocampal neurons was observed under electron microscopy, and expression of neuronal NOS (nNOS) in hippocampus and NO formation in plasma were examined after treatment with ZnPP-IX, an HO-1 inhibitor. In the ultrastructure of hippocampal neurons, the expression of HO-1 in hippocampus and CO formation in plasma were examined after treatment with L-NAME, a NOS inhibitor. We found that hippocampal neurons were injured after recurrent FS. The gene and protein expression of nNOS and HO-1 increased markedly in hippocampus in FS rats, while CO formation in plasma increased markedly and the concentration of NO in plasma increased slightly. ZnPP-IX could worsen the neuronal damage of recurrent FS rats. However, it further increased the expression of nNOS and endogenous production of NO obviously. L-NAME alleviated the neuronal damage of recurrent FS rats, but decreased the expression of HO-1 and CO formation. The results of this study suggested that endogenous NOS/NO and HO/CO systems might interact with each other and therefore play an important regulating role in recurrent FS brain damage.  相似文献   

17.
We previously demonstrated that calmodulin-dependent protein kinase IIα (CaM-KIIα) phosphorylates nNOS at Ser847 in the hippocampus after forebrain ischemia; this phosphorylation attenuates NOS activity and might contribute to resistance to post-ischemic damage. We also revealed that cyclic AMP-dependent protein kinase (PKA) could phosphorylate nNOS at Ser1412in vitro. In this study, we focused on chronological and topographical changes in the phosphorylation of nNOS at Ser1412 after rat forebrain ischemia. The hippocampus and adjacent cortex were collected at different times, up to 24 h, after 15 min of forebrain ischemia. NOS was partially purified from crude samples using ADP agarose gel. Neuronal NOS, phosphorylated (p)-nNOS at Ser1412, PKA, and p-PKA at Thr197 were studied in the rat hippocampus and cortex using Western blot analysis and immunohistochemistry. Western blot analysis revealed that p-nNOS at Ser1412 significantly increased between 1 and 6 h after reperfusion in the hippocampus, but not in the cortex. PKA was cosedimented with nNOS by ADP agarose gel. Immunohistochemistry revealed that phosphorylation of nNOS at Ser1412 and PKA at Thr197 occurred in the subgranular layer of the dentate gyrus. Forebrain ischemia might thereby induce temporary activation of PKA at Thr197, which then phosphorylates nNOS at Ser1412 in the subgranular layer of the dentate gyrus.  相似文献   

18.
In certain neurodegenerative diseases damaging levels of nitric oxide (NO) are produced by neuronal nitric oxide synthase (nNOS). It, therefore, is important to develop inhibitors selective for nNOS that do not interfere with other NOS isoforms, especially endothelial NOS (eNOS), which is critical for proper functioning of the cardiovascular system. While we have been successful in developing potent and isoform-selective inhibitors, such as lead compounds 1 and 2, the ease of synthesis and bioavailability have been problematic. Here we describe a new series of compounds including crystal structures of NOS-inhibitor complexes that integrate the advantages of easy synthesis and good biological properties compared to the lead compounds. These results provide the basis for additional structure–activity relationship (SAR) studies to guide further improvement of isozyme selective inhibitors.  相似文献   

19.
Nitric oxide (NO) is a well-recognized versatile signaling molecule. It is produced by catalytic action of nitric oxide synthase (NOS) on L-arginine in a variety of animal tissues. Existence of different isoforms of NOS has been shown in mammalian testis, but report on their presence in the testis of ectothermic vertebrates is non-existent. This study demonstrates the differential expressions of two isoforms of nitric oxide synthase (neuronal-nNOS and inducible-iNOS) like molecules in different cell types in the testis of seasonally breeding catfish, Clarias batrachus through immunohistochemistry. Positive immunoprecipitation of nNOS and iNOS like molecules were detected in germ cells as well as interstitial cells only in the recrudescing and fully mature fish. The immunoreactions differed in intensity and varied with changing reproductive status. Treatment of adult male fish with NO donor, sodium nitroprusside, and a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME) increased and decreased the total nitrate and nitrite concentration in the testis, respectively. Sodium nitroprusside and L-NAME also induced simultaneous decline and rise in the testicular testosterone level, respectively. These findings, thus, suggest that NOS isoforms are expressed variedly in different cell types in the testis of reproductively active fish. This investigation also suggests that NO inhibits testosterone production in the testis.  相似文献   

20.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), two members of the VIP/secretin/glucagon family, modulate neurotransmission via stimulation of protein kinases including cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) in the central and peripheral nervous systems. They are reported to co-exist with nitric oxide synthases (NOSs) and other neuropeptides within the nervous system and peripheral tissues. In the present study, we investigated the neuronal role of these peptides in NO production in PC12 cells. We showed that PACAP decreased NO production in a dose-dependent manner, and the activators of protein kinase A and C also inhibited the NO production in PC12 cells. RT-PCR experiments demonstrated that PC12 cells constitutively express the mRNAs for neuronal NOS and the PACAP-specific (PAC1) receptor, and we concluded that PACAP plays an important role in the regulation of nNOS activity through PAC1 receptor in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号