首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucocorticoid regulation of the adrenergic enzyme, phenylethanolamine N-methyltransferase (PNMT) was studied in organ cultures of the superior cervical ganglion (SCG) from newborn rats. Although PNMT catalytic activity was present in control ganglia, enzyme levels were too low to allow visualization of PNMT immunofluorescent cells. Addition of dexamethasone (DEX) or corticosterone to the medium resulted in a large increase in PNMT activity and bright PNMT immunoreactive (PNMT-IR) staining in cells resembling small, intensely fluorescent (SIF) cells. Addition of non-glucocorticoid steroids was ineffective. Exposure to a brief, 2-hr pulse of DEX (10(-6) M) in vitro elicited the same increase in PNMT as continual exposure to DEX. Studies using metabolic inhibitors demonstrated that the steroid-dependent increase in PNMT activity required both protein and RNA synthesis. Furthermore, the increase was inhibited by cytochalasin B and by the glucocorticoid receptor antagonists, DEX 21-mesylate and cortisol 21-mesylate. These observations suggest that glucocorticoids increase PNMT protein in SIF cells by interacting with specific steroid receptors that undergo translocation to the nucleus.  相似文献   

2.
The suppressive effect of glucocorticoids (GC) upon antigen-induced phosphatidylinositol phospholipase C (PI-PLC) activity and inositol phosphate formation by rat basophilic leukemia cells (RBL-2H3) has been characterized. Addition of antigen for a period of 1-30 min enhanced production of [3H]inositol monophosphate (IP1), inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3) by about 5-10-fold. Pretreatment with hydrocortisone (HC) reduced formation of the various inositol phosphates (IPs) and degradation of phosphatidylinositol 4,5-bisphosphate (PIP2) by an average of 50%. Maximal inhibition of hydrolysis of PIP2 and reduction in stimulation of IP3 formation was reached after 4 h of preincubation with 2.10(-6) M of HC. Cycloheximide and RU486, a GC receptor antagonist, completely prevented the inhibitory effect of HC on IP formation. Other GC, dexamethasone (DEX) and triamcinolone (each at 2.10(-7) M) markedly suppressed antigen induced IP3 production, while aldosterone and sex steroids such as estradiol and progesterone (each at 2.10(-6) M) were virtually inactive. Antigen-stimulated phosphorylation of a 18 kDa and other proteins was inhibited by about 60% following pretreatment with the GC. This inhibition was in turn prevented by cycloheximide. DEX also doubled the activity of cellular acid phosphatase activity. The results suggest that the inhibitory effect of GC is specific, receptor-mediated, dependent on protein synthesis and possibly mediated by protein phosphatase activity.  相似文献   

3.
In vivo, supraphysiological doses of glucocorticoids are required to restore adrenal medullary phenylethanolamine N-methyltransferase (PNMT, E.C. 2.1.1.28) activity after hypophysectomy. However, in vitro, phenylethanolamine N-methyltransferase gene expression appears normally glucocorticoid-responsive. To explore this paradox, rats were given dexamethasone or the type II-specific glucocorticoid RU28362 (1-1000 micrograms/day), and adrenal phenylethanolamine N-methyltransferase activity and mRNA levels were determined. At low doses (1-30 micrograms/day), neither steroid altered mRNA whereas at higher doses (100-1000 micrograms/day), mRNA rose 10- to 20-fold, with dexamethasone approximately 3 times as potent as RU28362. In contrast, enzyme activity fell with low doses of either steroid, consistent with suppression of ACTH and endogenous steroidogenesis. At higher doses of RU28362, enzyme activity remained low and unchanged despite increased mRNA expression, whereas higher doses of dexamethasone progressively restored the enzyme to normal. These findings suggest 1) that glucocorticoid regulation of phenylethanolamine N-methyltransferase activity occurs largely independent of gene expression; 2) that glucocorticoid effects on enzyme activity are primarily indirect, probably through cosubstrate regulation and/or enzyme stabilization; and 3) that these effects are not mediated via a classical (type II) glucocorticoid receptor mechanism, given the high doses of dexamethasone and corticosterone required and the inability of RU28362 to mimic the effects of these less selective steroids.  相似文献   

4.
5.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Membrane-bound peptidases are critical regulators of peptide hormones. We therefore characterized aminopeptidase A (APA) activity in human glomerular epithelial cells (HGEC) and studied the control of its expression. APA, which splits off the N-terminal Asp from angiotensin II (AII), was present at the surface of HGECs (55% of the total enzyme). APA activity was calcium-dependent and was inhibited by amastatin. Treatment of HGECs by dexamethasone (DEX) increased ecto-APA activity in a dose- and time-dependent manner. Maximal increase of APA activity (x 2) occurred after treatment with 0.5 microM DEX for 5 days. HIgher concentrations (1-10 microM) of aldosterone (ALD) stimulated APA activity to a lesser extent (x 1.25). Actinomycin D and cycloheximide prevented and RU 38486, a glucocorticoid receptor antagonist, suppressed the DEX-induced increase in APA activity. These results indicate that AII availability at glomerular receptor sites may be reduced by DEX and suggest a role for glucocorticoids in AII-dependent changes of glomerular filtration rate.  相似文献   

7.
We have investigated the effect of mineralocorticoids on beta-adrenergic receptors in cultured arterial smooth muscle cells. Mineralocorticoid (aldosterone) treatment resulted in a significant increase in beta-adrenergic receptors measured by [3H]dihydroalprenolol (DHA) binding. This effect required at least 20 hours of incubation with aldosterone and was completely blocked by cycloheximide (10 micrograms/ml), indicating protein synthesis was required for this response. Aldosterone at the concentration range of 10(-8)-10(-6) M increased [3H]DHA binding, but was ineffective at 10(-9) M. Scatchard analysis of [3H]DHA binding revealed that the observed significant increase in binding was due to an increased number of binding sites (P less than 0.05), and that the affinity was unchanged. The aldosterone (1 x 10(-8) M) effect was completely blocked by the combination of RU 38486 (10(-6) M) and spironolactone (10(-7) M), but not by the glucocorticoid antagonist RU 38486 alone. While basal c-AMP levels were not changed by aldosterone (10(-6) M) treatment, the isoproterenol (10(-6) M) stimulated level of c-AMP was significantly higher in cells treated with aldosterone (P less than 0.05). We conclude that aldosterone, acting through the mineralocorticoid receptor, has a direct effect on arterial smooth muscle cells mediated through modulation of beta-adrenergic receptors of these cells.  相似文献   

8.
The human brain is a target tissue for glucocorticoids (GC). Dehydroepiandrosterone (DHEA) is a neurosteroid produced in the brain where it is transformed into 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA. The antiglucocorticoid effects of both 7-hydroxylated metabolites have been investigated with evidence in mice that neither form of DHEA interfered with the binding of GC to its glucocorticoid receptor (GR), but contributed to a decreased nuclear uptake of the activated GR. Our objective was to use COS-7 cell culture to research DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA interferences with GR trafficking. These cells did not carry out the 7alpha-hydroxylation of DHEA and the oxidation of cortisol into cortisone. The cDNA of the human GR was inserted into pcDNA3 for a transient transfection of COS-7 cells. Human GR transactivation activity was measured from a luciferase-MMTV reporter gene. The transfected COS-7 cells were cultured using 10(-12) to 10(-5) M dexamethasone (DEX) or cortisol, which triggered the reporter expression. Treatment with 10(-12) to 10(-5) M DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA caused no change in the GC-induced GR transactivation. A reconstruction of the process associated EGFP to the human GR cDNA. Confocal microscopic examination of COS-7 cells transiently expressing the fusion protein EGFP-GR showed nuclear fluorescence 60 min after incubation with 10(-8) M DEX or cortisol. The addition of 10(-5) M DHEA, 7alpha-hydroxy-DHEA or 7beta-hydroxy-DHEA did not change its kinesis and intensity. These results contribute to the knowledge of DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA, in relation to antiglucocorticoid activity. We conclude that direct interference with GR trafficking can be discounted in the case of these hormones, therefore proposing new possibilities of investigation.  相似文献   

9.
Primary cortisol receptor resistance has been reported in 6 patients and 14 asymptomatic family members. We observed an additional 6 patients (2 males and 4 females). The male patients presented with hypertension. The female patients presented with acne, hirsutism and irregular menstruations. Dexamethasone therapy (1-1.5 mg/day) was of considerable clinical benefit. All 6 patients showed insufficient suppression of cortisol after 1 mg dexamethasone. The diurnal rhythm of ACTH and cortisol was intact, albeit at an elevated level. There was a normal increase of ACTH, cortisol, and GH to insulin-induced hypoglycemia, while cortisol production was (slightly) elevated. Adrenal androgen levels were increased in all patients. Glucocorticoid receptors measured in a whole cell dexamethasone binding assay in mononuclear leukocytes showed a lowered affinity in 1, and lowered numbers of receptors in 4 patients. In 1 patient no abnormalities were found. As a "bioassay" for glucocorticoid action dexamethasone suppressibility of mitogen-stimulated incorporation of [3H]thymidine in mononuclear leukocytes was measured. In this last patient dexamethasone suppressibility of [3H]thymidine incorporation was significantly lowered. Twelve months' treatment with 200 mg RU 486 per day in meningioma patients induced a similar biochemical picture as observed in primary cortisol receptor resistance. Partial cortisol receptor resistance might be less rare than previously thought. In the 6 patients presented at least 3 different forms can be recognized. Therapy with dexamethasone was successful in female patients with acne and hirsutism, as the secondary overproduction of adrenal androgens was effectively controlled. Chronic therapy with RU 486 causes a biochemical picture similar to primary cortisol receptor resistance.  相似文献   

10.
The effect of progesterone on the differentiation of the 3T3-L1 preadipocytes was investigated and compared with other sex steroids (estradiol and testosterone), with cortisol, with the synthetic progestin R5020 and with the progestin/glucocorticoid antagonist RU38486. At 10−8 M, progesterone stimulated the activity of glycerol-3-phosphate dehydrogenase and triglyceride deposition. Progesterone, R5020, cortisol, and RU38486 increased triglycerides about 2-fold at 10−7 M. Only minimal effects were observed with testosterone and estradiol even at 10−6 M. When the cells were cultured in presence of 10−5 M metyrapone the effect of progesterone was unchanged, suggesting that the progesterone was not metabolized to a glucocorticoid. Progesterone, R5020 and RU38486 competed efficiently with [3H]dexamethasone for the glucocorticoid receptor in 3T3-L1 cytosol. These results indicate a significant, reproducible dose-dependent effect of progestins on differentiation of the preadipocytes, which appears to be mediated via the glucocorticoid receptor.  相似文献   

11.
The binding of [3H]dexamethasone (DEX) to rat liver nuclei in vitro and in vivo have been compared. In vitro, purified nuclei displayed a single class of specific glucocorticoid binding sites with a dissociation constant (Kd) of approximately 10(-7) M for [3H]DEX at 4 degrees C. The glucocorticoid agonists prednisolone, cortisol, and corticosterone and the antagonists progesterone and cortexolone competed avidly for this site, but the potent glucocorticoid triamcinolone acetonide (TA) competed poorly in vitro. Nuclei isolated from the livers of intact rats contained 1-2 X 10(4) [3H]DEX binding sites/nucleus. Up to 85% of the binding sites were recovered in the nuclear envelope (NE) fraction when NE were prepared either before or after labeling with [3H]DEX in vitro. After adrenalectomy, the specific [3H]DEX binding capacity of both nuclei and NE decreased to 15-20% of control values, indicating sensitivity of the binding sites to hormonal status of the animals. Efforts to restore the binding capacity by administration of exogenous glucocorticoids, however, were unsuccessful. After labeling of rat liver nuclei in vivo by intraperitoneal injection of [3H]DEX or [3H]TA into living animals, the steroid specificity and subnuclear localization of radiolabel were different. Both [3H]TA (which did not bind in vitro) and [3H]DEX became localized to nuclei in a saturable fashion in vivo. With either of these ligands, approximately 20% of the total nuclear radiolabel was recovered in the NE fraction. These results suggest the presence of two separate and distinct binding sites in rat liver nuclei, one which is localized to the NE and binds [3H]DEX (but not [3H]TA) in vitro, and another which is not localized to the NE but binds [3H]DEX and [3H]TA in vivo.  相似文献   

12.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

13.
Antiglucocorticoid and antiprogestin RU38486 (RU486) stimulated the growth of highly androgen- and moderately glucocorticoid-sensitive SC-3 cells (a cloned cell line from Shionogi mouse mammary carcinoma 115) in a dose-dependent manner. A maximal 8-fold stimulation of growth by RU486 has been observed at 10(-7) M in a serum-free medium and its potency has been found to be almost the same as that of dexamethasone (Dex). The growth rate of SC-3 cells treated by triamcinolone acetonide (TA) or Dex combined with RU486 at 10(-9)-10(-7) M was enhanced compared to cells treated by TA or Dex alone, indicating that RU486 had additive rather than antagonistic effects. Our previous study revealed that RU486 could compete with the specific uptake of [3H]testosterone in intact SC-3 cells at relatively low affinity and the present study showed that the stimulatory effect of RU486 on the growth of SC-3 cells was significantly inhibited by pure antiandrogen flutamine and that half-maximal inhibition by flutamine was achieved at 10(-6) M. Moreover, we demonstrated that the conditioned medium from RU486-stimulated SC-3 cells contained growth-promoting activity which caused a 3.5-fold increase in DNA synthesis by SC-3 cells in the absence of RU486 and which was abolished by treatment with heparin-Sepharose. These results indicate that RU486-induced growth of SC-3 cells may be expressed as an androgenic activity through androgen receptor and mediated by a heparin-binding growth factor.  相似文献   

14.
Abstract: As adrenal medullary chromaffin cells express imidazoline binding sites in the absence of α2-adrenergic receptors, these cells provide an ideal system in which to determine whether imidazolines can influence catecholamine gene expression through nonadrenergic receptors. This study evaluates the ability of clonidine and related drugs to regulate expression of the gene for the epinephrine-synthesizing enzyme phenylethanolamine N -methyltransferase (PNMT) in the rat adrenal gland and in bovine adrenal chromaffin cell cultures. In vivo, PNMT and tyrosine hydroxylase (TH) mRNA levels increase in rat adrenal medulla after a single injection of clonidine. Clonidine also dose-dependently stimulates PNMT mRNA expression in vitro in primary cultures of bovine chromaffin cells, with a threshold dose of 0.1 μ M . Other putative imidazoline receptor agonists, including cimetidine, rilmenidine, and imidazole-4-acetic acid, likewise enhance PNMT mRNA production showing relative potencies that correlate with their binding affinities at chromaffin cell I1-imidazoline binding sites. The effects of clonidine on PNMT mRNA appear to be distinct from and additive with those exerted by nicotine. Moreover, neither nicotinic antagonists nor calcium channel blockers, which attenuate nicotine's influence on PNMT mRNA production, diminish clonidine's effects on PNMT mRNA. Although 100 μ M clonidine diminishes nicotine-stimulated release of epinephrine and norepinephrine in chromaffin cells, this effect appears unrelated to stimulation of imidazoline receptor subtypes. This is the first report to link imidazoline receptors to neurotransmitter gene expression.  相似文献   

15.
The concentration of pituitary adenylyl cyclase-activating polypeptide [PACAP-(1-38)] in porcine adrenal glands amounted to 14 +/- 3 pmol/g tissue. PACAP immunoreactive (PACAP-IR) fibers innervated adrenal chromaffin cells (often co-localized with choline acetyltransferase). Subcapsular fibers traversed the cortex-innervating endocrine cells and blood vessels [some co-storing mainly calcitonin gene-related peptide but also vasoactive intestinal polypeptide (VIP)]. PACAP-IR fibers were demonstrated in the splanchnic nerves, whereas IR adrenal nerve cell bodies were absent. In isolated, vascularly perfused adrenal gland, splanchnic nerve stimulation (16 Hz) and capsaicin (10(-5) M) increased PACAP-(1-38) release (1.6-fold and 6-fold respectively, P = 0.02). PACAP-(1-38) dose-dependently stimulated cortisol (2 x 10(-10) M; 24-fold increase, P = 0.02) and chromogranin A fragment (2 x 10(-9) M; 15-fold increase, P = 0.05) secretion. Both were strongly inhibited by the PAC(1)/VPAC(2) receptor antagonist PACAP-(6-38) (10(-7) M). PACAP-(6-38) also inhibited splanchnic nerve (10 Hz)-induced cortisol secretion but lacked any effect on splanchnic nerve-induced pancreastatin secretion. PACAP-(1-38) (2 x 10(-10) M) decreased vascular resistance from 5.5 +/- 0.6 to 4.6 +/- 0.4 mmHg. min. ml(-1). PACAP-(6-38) had no effect on this response. We conclude that PACAP-(1-38) may play a role in splanchnic nerve-induced adrenal secretion and in afferent reflex pathways.  相似文献   

16.
We investigated the mechanism of dissociation of cortisol and dehydroepiandrosterone sulfate (DHEA-S) secretion by the adrenal glands after the removal of an adrenal gland containing an adrenocortical adenoma in a patient with Cushing's syndrome. After removal of the adrenocortical adenoma, the serum cortisol rapidly decreased from 24.6 +/- 6.4 micrograms/dl (mean +/- SD, n = 6) to 0.7 +/- 0.5 micrograms/dl. Serum DHEA-S levels were 15 +/- 14 micrograms/dl and 6 +/- 9 micrograms/dl before and after surgery, respectively, and significantly lower than the control values. Serum cortisol levels reverted to normal levels 1.5 to 3 years after the surgery. On the other hand, DHEA-S levels reverted to normal 5 to 7 years after the serum cortisol levels had normalized. Monolayer cultures of normal human adrenal cells obtained at adrenalectomy in patients with advanced breast cancer and atrophic adrenal cells adjacent to the adrenocortical adenoma in patients with Cushing's syndrome were used to study the mechanism of the dissociation of cortisol and DHEA-S secretion. ACTH caused significant increases in the productions of pregnenolone (P5), progesterone (P4), 17-hydroxypregnenolone (17-OH-P5), 17-hydroxyprogesterone (17-OH-P4), DHEA, DHEA-S, androstenedione (delta 4-A), and cortisol. The amounts of 17-OH-P5 and 17-OH-P4 produced by ACTH in atrophic adrenal cells were significantly greater than those in normal adrenal cells. The amounts of DHEA, DHEA-S and delta 4-A produced by ACTH in atrophic adrenal cells were significantly smaller than those of normal adrenal cells. The conversion rate of 17-OH-[3H]P5 to 17-OH-[3H]P4 and 11-deoxy-[3H] cortisol was higher in atrophic adrenal cells than in normal adrenal cells, but the conversion rate to [3H]DHEA, [3H]DHEA-S and [3H]delta 4-A was significantly lower in atrophic adrenal cells than in normal adrenal cells. These results suggest that the dissociation of cortisol from DHEA-S after the removal of adrenocortical adenoma is a probably due to diminished C17,20-lyase activity in the remaining atrophic adrenal gland.  相似文献   

17.
We studied the glucocorticoid receptor complexes of pulmonary and thymic cytosols of female A/J and CD-1 mice and of hepatoma G2 cells by two column-chromatographic systems, using both [3H]dexamethasone (DEX) and [3H]phenytoin (DPH) as ligands. Three DNA-cellulose adsorbable [3H]DEX-receptor complexes were separated in each system. Molecular sieving gave a 7-, a 5.4-, and a 3.5-nm complex (Stokes radii), and DEAE-Sephadex A-50 chromatography gave a complex eluting in the wash, one at 0.14 M KCl, and one at 0.20 M KCl by a KCl gradient. DPH blocked the binding of the 7- and 3.5-nm, wash, and 0.14 M KCl [3H]DEX complexes. Only two DNA-cellulose adsorbable [3H]DPH complexes, each blocked by DEX, were obtained in each system: a 7- and a 3.5-nm, a wash, and a 0.14 M KCl complex. Thus, there is a common receptor for both DPH and DEX. This receptor has two properties which distinguish it from the 5.4-nm DEX-specific receptor: (i) it binds with a variety of steroids other than glucocorticoids and DPH, and (ii) it rebinds new [3H]DEX or [3H]DPH after loss of ligand during chromatographic separation. These results indicate that DPH binds to receptor IB and not to receptor II of Litwack. [G. Litwack, 1976, in Glutathion: Metabolism and Function (Arias, I.M., and Jakoby, W.B., eds.), pp. 285-299, Raven Press, New York]. We have also found that hepatoma G2 cells have only receptor II. DPH affects neither the induction of tyrosine aminotransferase by DEX nor the basal level of this enzyme in these cells. Moreover, neither DEX nor DPH inhibits the release of [3H]arachidonic acid prelabeled in these cells, as they do in thymocytes which have the common receptor. Thus, it appears that glucocorticoid receptor IB binds DEX and DPH as glucocorticoid agonists mediating the anti-inflammatory and teratogenic action of these drugs, while receptor II apparently is responsible for the induction of tyrosine aminotransferase by DEX.  相似文献   

18.
Glucocorticoids (GC) are considered as key modulators of glycogen homeostasis in peripheral tissues, but their role in the central nervous system has only partially been characterized. Exposure of primary cultures of cortical astrocytes to dexamethasone (DEX), a synthetic glucocorticoid, results in the reduction of noradrenaline (NA)-induced glycogen synthesis in a concentration-dependent manner with a IC50 of 4.88 nm and a maximum inhibition of 51%. Such an effect is mediated via glucocorticoid receptors (GRs), since it is mimicked by the glucocorticoid analogue RU28362 (100 nm) and prevented by the GR antagonist RU38486 (1 micro m). DEX does not act through alteration of signal transduction mechanisms, as cAMP formation induced by noradrenergic stimulation was unchanged. Moreover, glycogen synthesis was inhibited to the same extent when DEX was applied either together or only after a brief NA application. Neither [3H]2-deoxyglucose uptake nor lactate release was altered by DEX in the presence of NA, demonstrating that inhibition of glycogen synthesis is not a consequence of reduced glucose utilization or availability. Interestingly, enhancement of glycogen synthase activity induced by NA was reduced in the presence of DEX (-27%). These results suggest that GC could have a significant influence on neuroenergetics as they could modulate activity-related changes in brain glycogen metabolism.  相似文献   

19.
The soybean phytoestrogen, genistein (Gen), has anabolic effects on bone through mechanisms that remain to be elucidated. We examined the role of nitric oxide (NO) and its downstream effector guanylyl cyclase (GC) in mediating the effects of Gen on the proliferation and osteoblastic maturation of primary mouse bone marrow-derived mesenchymal stem cells (BMSCs). Gen (10(-8) approximately 10(-6) M) resulted in a dose-dependent increase in cell proliferation as measured by increased [3H]thymidine incorporation, and stimulated osteoblastic maturation as assessed by culture duration-dependent increments in alkaline phosphatase (ALP) activity, calcium deposition into extracellular matrix and Runx2/Cbfa1 gene expression in BMSCs cultures. Gen also resulted in a dose-dependent increase in NO synthase (NOS) activity, NO formation, and cGMP production in BMSCs cultures. The effects of Gen were mimicked by 17beta-estradiol (E2, 10(-8) M). Concurrent treatment with the estrogen receptor (ER) antagonist ICI182,780 (10(-7) M) or the NOS inhibitor L-NAME (3 x 10(-3) M) diminished the Gen (10(-6) M)-mediated increase in NOS activity, NO production, and cGMP content. In contrast, a soluble GC inhibitor 1H-[1,2,4]oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ, 10(-6) M) selectively blocked the Gen (10(-6) M)-mediated increase in cGMP content but not in NO production and NOS activity. Moreover, inhibition of ER, NOS activity or cGMP blocked Gen-induced proliferation and osteoblastic differentiation of BMSCs and Runx2/Cbfa1 gene expression in culture. Gen has estrogen-like activity and stimulates the proliferation and osteoblastic differentiation of mouse BMSCs at least in part through NO/cGMP pathway.  相似文献   

20.
1. Specific [3H]estradiol binding activity with characteristics of estrogen receptors was found in the cytosols and nuclear extracts of the adrenal cortex proper and special zone of the brushtail possum (Trichosurus vulpecula). 2. The specific estradiol receptor had a sedimentation coefficient on sucrose gradients of approximately 9S and a molecular weight on gel filtration of more than 200,000. The adrenal cortex cytosol binds [3H]estradiol with high affinity (Ka 5.5 X 10(9) M-1), and limited capacity (Bmax 62.7 fmol/mg cytosol prot). In competition experiments with different steroids the receptor showed a high affinity for four estrogens and a very low affinity to androgens, progesterone and cortisol. 3. There was no difference in the affinity and maximum binding capacity of the cytosols from cortex proper in male and female animals, but the binding capacity of the special zone of females was half that of cortex proper. Estradiol receptors were found in the kidney, liver, lung, testis and muscle but only in the adrenal and prostate was the binding capacity relatively high compared with the uterus. 4. The specific binding capacity of [3H]estradiol to cytosols of adrenal cortex at different stages of the estrus cycle and pregnancy was unrelated to that of the uterus. In the adrenal the receptor concentration was lowest at estrus, when uterine concentration was high, while in late pregnancy the binding of adrenal cortex and uterus cytosols was almost the same. 5. The possible physiological significance of the presence of a specific estrogen receptor in male and female possums is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号