首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogenetic relationships of the family Trichodontidae and suborder Cottoidei (and zoarcoid Bathymasteridae) are reconstructed morphologically. The monophyly of the Trichodontidae, Cottoidei, and Zoarcoidei is unambiguously supported by 14 synapomorphies, including 1 newly recognized (and also 4 synapomorphies when ACCTRAN is accepted). It is assumed that the Trichodontidae is deeply nested within the Cottoidei, and the family and Cottoidea plus Cyclopteroidea have a sister relationship, supporting a previously inferred molecular phylogenetic hypothesis. We propose that the Trichodontidae is placed into the cottoid superfamily Trichodontoidea.  相似文献   

2.
Although virtually no phylogenetic evidence (in the sense advocated by Hennig, 1966) had been previously presented to support the monophyly of the Characidiinae, and most 'diagnostic' characters used by previous authors were found to be unacceptable in a cladistic classification, i t is still possible to diagnose the Characidiinae in a phylogenetic sense. This study revealed the existence of 13 synapomorphies supporting the monophyly of the group. Several of these synapomorphies, such as the modifications associated with the mesethmoid, the jaw bones, and the ribs of the fifth vertebra, are unique to the Characidiinae, thus providing a solid basis for recognizing the group as a monophyletic unit of characiform fishes. Demonstration of characidiin monophyly provides a solid foundation for further phylogenetic analysis of characidiin interrelationships, and higher level relationships among characiform fishes.  相似文献   

3.
Members of the family Scutelleridae (Heteroptera: Pentatomomorpha: Pentatomoidea) are also called shield bugs because of the greatly enlarged scutellum, or jewel bugs because of the brilliant colours of many species. All scutellerids are phytophagous, feeding on various parts of their host plants. Due to lack of obvious synapomorphies and the failure to apply rigorous phylogenetic methods, the higher classification of Scutelleridae has been disputed for more than 150 years. Here we reconstructed a phylogeny of Scutelleridae based on complete sequences of 18S and 28S nuclear rDNAs and all 13 protein‐coding genes of the mitochondrial genome, with the sampled taxa covering all of the currently recognized subfamilies. The monophyly of Scutelleridae was confirmed by the congruence of the results of analyses conducted using Bayesian inference, maximum likelihood and maximum parsimony. The phylogenetic relationships among subfamilies were well resolved for the first time. Furthermore, time‐divergence studies estimated that the time of origin of Scutelleridae was in the Early Cretaceous (142.1–122.8 Ma), after the origin of the angiosperms. The diversification between the extant subfamilies of Scutelleridae and within the subfamilies occurred from the late Palaeocene to the late Miocene, simultaneously with the rise of the major groups of angiosperms and other phytophagous insects.  相似文献   

4.
The cephalic and pectoral girdle structures of the pimelodin Pimelodus blochii (Pimelodus group) are described and compared to those of representatives of the two other main pimelodin groups, namely Calophysus macropterus (Calophysus group) and Pseudoplatystoma fasciatum (Sorubim group), and of a representative of the peculiar pimelodin genus Hypophthalmus, H. edentatus, and several other catfishes, as the foundation for a discussion on the synapomorphies and phylogenetic relationships of the Pimelodinae. Three new, additional potential synapomorphies to support the monophyly of the Pimelodinae are pointed out: (1) presence of a 'muscle 1 of the mandibular barbels' running from the antero-ventro-mesial surface of the cartilaginous plates carrying these barbels to the dentaries; (2) presence of a muscle tensor tripodis running from the posterior surface of the neurocranium to the dorsal surface of the swimbladder near the tripus; and (3) presence of a 'drumming muscle of the swimbladder' running from the parapophyses of the fourth vertebra and, eventually, the posterior surface of the neurocranium, to the antero and antero-ventral surface of the swimbladder. The subfamilies Pimelodinae, Heptapterinae and Pseudopimelodinae seem to constitute a monophyletic assemblage, thus contradicting the commonly accepted idea that the family Pimelodidae is a polyphyletic clade.  相似文献   

5.
The phylogenetic relationships among two Paracyprichromis and five Cyprichromis species, included in the Tanganyikan cichlid tribe Cyprichromini, were investigated using morphological features. The previously proposed diagnostic characters of Paracyprichromis are not synapomorphies, because the nonelongated swim bladder is plesiomorphic, the numbers of dorsal and anal fin rays and scales on longitudinal line and around the caudal peduncle overlap with those of Cyprichromis, and these counts and number of vertebrae are all included within the ranges of other Tanganyikan cichlids. The monophyly of Paracyprichromis is supported by a unique condition of infraorbitals to this genus. Additionally, the monophyly of Cyprichromis was reconfirmed by one of the previously proposed diagnostic characters, the presence of an elongated swim bladder.  相似文献   

6.
 The external morphology, osteology, and myology of the African fluvial genus Teleogramma are described, and its familial allocation is discussed. Teleogramma is included in the family Cichlidae by loss of a major structural association between adductor mandibulae sections 2 and w, and by having an insertion of a large ventral division of adductor mandibulae section 2 onto the anguloarticular, expanded head of the fourth epibranchial, transversus dorsalis subdivided into four parts, functionally decoupled premaxillae and maxillae, the stomach's extendible blind pouch, the left-hand exit to the anterior intestine, the first intestinal loop at the left side, two epurals, seven branched rays on each upper and lower caudal fin lobe, free first uroneural from a united element of first preural and ural vertebra, and third preural vertebra fused with its haemal spine. Seven synapomorphies supporting the monophyly of Teleogramma are indicated, including the absence of or very low supraoccipital crest, the presence of a nostril tube, nonextended supraoccipital anteriorly, absence of extensive cartilaginous cap on the anterior border of the second epibranchial, presence of a beaklike projection on the cleithrum, caudal branched slip of epaxialis that inserts onto the upper two or three branched rays on the upper lobe of the caudal fin, and flexor dorsalis superior, which inserts onto the lower four unbranched rays on the upper lobe of the caudal fin. Received: September 12, 2001 / Revised: December 17, 2001 / Accepted: December 28, 2001  相似文献   

7.
A phylogenetic analysis combining 63 morphological characters and DNA sequences (3296 bp), comprising segments of the mitochondrial genes 16S and ND2, and the nuclear gene 28S, for 19 taxa of the West African killifish tribe Callopanchacini and 11 out‐group taxa, highly supported the monophyly of the tribe, and made it possible to provide the first unambiguous diagnoses for the included genera (Archiaphyosemion, Callopanchax, Nimbapanchax, and Scriptaphyosemion). The monophyly of the Callopanchacini is supported by six morphological synapomorphies: posterior portion of the mandibular channel consisting of a single open groove; basihyal pentagonal, as a result of a nearly rectangular basihyal cartilage and a triangular bony support; dorsal process of the urohyal usually absent, sometimes rudimentary; presence of a wide bony flap adjacent to the proximal portion of the fourth ceratobranchial; a broad bony flap adjacent to the proximal portion of the fifth ceratobranchial; and haemal prezygapophysis of the pre‐ural vertebra 2 ventrally directed. The analysis indicates that the medially continuous rostral neuromast channel, commonly used to diagnose the tribe, is plesiomorphic. This study also indicates that, among African aplocheiloids, the annual life cycle style developed once in Callopanchax, and then again independently in the clade containing Fundulopanchax and Nothobranchius. © 2015 The Linnean Society of London  相似文献   

8.
白鱼属鱼类的系统发育(鲤形目:鲤科)   总被引:3,自引:3,他引:0  
白鱼属(Anabarilius Cockerell)是我国特有的鲤科鱼类,主要分布于云南东部、中部和四川南部。分布范围不大,但种的分化强烈。 Regan(1904,1908, 1918)最先报道四种白鱼,但均置于Barilius属。尔后,Cockerell(1923)以Barilius andersoni Regan为模式种建立白鱼属;Nichols(1927)、张孝威(1944)、易伯鲁、吴清江(1964)、刘振华、何纪昌(1983)先后记述了部分种和亚种。陈银瑞、褚新洛(1980)在系统整理的基础上,澄清了白鱼属属级分类上的混乱,记述了三新种和一新亚种。何纪昌、王重光(1984)用数值分类法探讨了白鱼属的分类,报道了二新种和一新亚种。至此,白鱼属共包括15个种和亚种。  相似文献   

9.
Ariid monophyly and intrafamilial relationships are investigated based on cladistic analysis of 230 morphological characters. Terminal taxa examined include whenever possible type‐species, or the most morphologically similar species to the type‐species of the nominal genera, and the largest possible number of species, including cleared and stained specimens, available in zoological collections. Previous hypotheses about monophyly of the Ariidae are strongly corroborated by new synapomorphies discovered in the present study. The subfamily Galeichthyinae and the remaining ariids are strongly supported by new morphological characters. The monotypic subfamily Bagreinae is recognized as the sister group to all nongaleichthyin ariids, supported by a large series of exclusive synapomorphies. A new concept of Ariinae is presented: the subfamily is found to be unequivocally monophyletic and includes all ariid genera, except Galeichthys and Bagre. New data supporting the monophyly of the genera included in the Ariinae are introduced and previous hypotheses of monophyly, species composition, morphological definition, and relationships are reviewed and discussed.  相似文献   

10.
Previous research on the osteology of the Gobiesocidae focused mostly on the neurocranium and the thoracic sucking disc (formed by the paired‐fin girdles). Little attention has been paid to the skeleton of the median fins. The dorsal‐ and anal‐fin skeleton of Lepadogaster lepadogaster and other gobiesocids (excluding Alabes, which lacks these fins) are characterized by the absence of spines, branched fin‐rays, and middle radials. In gobiesocids, the distal radials never ossify and consist of elastic hyaline‐cell cartilage. Gouania wildenowi is unique among gobiesocids in having further reductions of the dorsal‐ and anal‐fin skeleton, including a notable decrease in the size of the proximal‐middle radials in an anterior–posterior direction. Unlike L. lepadogaster, which exhibits a one‐to‐one relationship between the dorsal‐ and anal‐fin rays and proximal‐middle radials, G. wildenowi has a higher number of proximal‐middle radials than distal radial cartilages and fin rays in the dorsal and anal fins. In G. wildenowi, the dorsal‐ and anal‐fin rays do not articulate with the distal tip of the proximal‐middle radials but are instead positioned between proximal‐middle radials, which is unusual for teleosts. Previously unrecognized dorsal and ventral pads of elastic hyaline‐cell cartilage are also present in the caudal skeleton of L. lepadogaster, G. wildenowi, and all other gobiesocids examined. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Analysis of the Dana collection of larval fishes yielded 36 exterilium larvae and 17 rubaniform larvae, referable to the Ophidiidae. Both larval types reach large sizes before transformation and are characterized by an exterilium gut, although it is less strongly expressed in rubaniform larvae. Both have early-forming, elongate, descending processes of the coracoid that serve to support the trailing intestines. Both have a greatly reduced pelvic girdle attached to a stalklike cartilaginous structure, resulting in a pelvic fin origin well posterior to the cleithral symphysis, a position that is without precedent in the family Ophidiidae. Both of these larval types also strongly display an anterior to posterior developmental sequence, lose the pelvic fin rays at transformation, and have extraordinarily elongate proximal radials supporting their dorsal and anal fins and modified proximal radials supporting the anterior dorsal fin rays. After examination of these larvae and reference to 5 previously described exterilium larvae and 1 previously described rubaniform larva, we conclude that they belong to Lamprogrammus (three species) and Brotulotaenia (four species), respectively. The most recent classification of the Ophidiidae places Brotulotaenia in the monotypic subfamily Brotulotaeniinae, and Lamprogrammus in the subfamily Neobythitinae along with 37 other genera. The latter subfamily is an unwieldy assemblage for which monophyly has never been established. Ontogenetic evidence suggests a closer relationship between Brotulotaenia and Lamprogrammus, and the most economical reorganization of the ophidiids would involve incorporating the latter genus into the Brotulotaeniinae.  相似文献   

12.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

13.
Phylogeny of the flyingfish family Exocoetidae (Teleostei, Beloniformes)   总被引:2,自引:0,他引:2  
The phylogeny of the flyingfish family Exocoetidae is studied cladistically, using 41 morphological characters encompassing early life history, and external and internal features. The monophyly of the family is supported by 10 synapomorphies. Within the family,Oxyporhamphus is the sister group to all other genera, the monophyly of the latter being defined by 10 synapomorphies.Fodiator is the sister group of genera characterized by the presence of chin barbels in juveniles.Parexocoetus is the sister group ofExocoetus, Cypselurus, Prognichthys andHirundichthys, the latter being defined by four synapomorphies. In the latter group,Exocoetus is the sister group of the other three genera. The phylogeny of the Exocoetidae is characterized by the stepwise upgrading of gliding capability, with sequential modifications of the caudal, pectoral and pelvic fins. The subfamily Oxyporhamphinae is resurrected.  相似文献   

14.
The subfamily Aphyocharacinae was recently redefined to comprise eight genera: Aphyocharax, Prionobrama, Paragoniates, Phenagoniates, Leptagoniates, Xenagoniates, Rachoviscus and Inpaichthys. This new composition, however, is partially incongruent with published results of molecular studies especially concerning the positions of Rachoviscus and Inpaichthys. Our goal was to investigate the monophyly of Aphyocharacinae and its interrelationships using three distinct phylogenetic methodologies: Maximum-likelihood and Bayesian analyses of molecular data, and also Parsimony analysis of a concatenated molecular and morphological dataset. All tree topologies recovered herein suggest that Rachoviscus, Inpaichthys and Leptagoniates pi do not belong to the Aphyocharacinae. The remaining aphyocharacin taxa analyzed do form a monophyletic group, which is itself composed of two subgroups being one comprised of Paragoniates, Phenagoniates, Leptagoniates and Xenagoniates, and the other comprised of Aphyocharax and Prionobrama. Internal relationships among these genera are statistically well supported and morphological synapomorphies are presented at the generic level. All tree topologies also indicate that Aphyocharacidium is closely related to Aphyocharacinae suggesting that it should be included in this subfamily. As recognized in the present study, the Aphyocharacinae is diagnosed by a single morphological synapomorphy: two dorsal-fin rays articulating with the first dorsal pterygiophore.  相似文献   

15.
The phylogenetic structure of the tricolpate clade (or eudicots) is presented through a survey of their major subclades, each of which is briefly characterized. The tricolpate clade was first recognized in 1989 and has received extensive phylogenetic study. Its major subclades, recognized at ordinal and familial ranks, are now apparent. Ordinal and many other suprafamilial clades are briefly diagnosed, i.e., the putative phenotypic synapomorphies for each major clade of tricolpates are listed, and the support for the monophyly of each clade is assessed, mainly through citation of the pertinent molecular phylogenetic literature. The classification of the Angiosperm Phylogeny Group (APG II) expresses the current state of our knowledge of phylogenetic relationships among tricolpates, and many of the major tricolpate clades can be diagnosed morphologically.  相似文献   

16.
We used the chloroplast gene ndhF to reconstruct the phylogeny of the moonseed family (Menispermaceae), a morphologically diverse and poorly known cosmopolitan family of dioecious, primarily climbing plants. This study includes a worldwide sample of DNA sequences for 88 species representing 49 of the 70 genera of all eight traditionally recognized tribes. Phylogenetic relationships were estimated, and the Shimodaira-Hasegawa test was used to compare the likelihood of alternative phylogenetic hypotheses and to evaluate the monophyly of tribes currently in use. The monospecific Indo-Malesian Tinomiscium is sister to the remaining members of the family, within which are two major clades. Within these two clades, well-supported clades correspond to four of the eight traditionally recognized tribes, while others, such as Menispermeae, are polyphyletic. Mapping of major morphological characters on the phylogeny indicates that the crescent-shaped seed is derived from a straight seed, the tree habit has arisen multiple times, endosperm has been lost many times, but unicarpellate flowers evolved only once. Morphological synapomorphies for Menispermaceae include the presence of a condyle, a large embryo, and druplets. The phylogeny provides for the first time a detailed molecular-based assessment of relationships in Menispermaceae and clarifies our understanding of morphological diversification within the family.  相似文献   

17.
The phylogeny of the genus Rivellia Robineau‐Desvoidy was inferred from mitochondrial 16S ribosomal (r)DNA gene sequences of 13 Korean Rivellia species and six species representing other platystomatid genera and the family Tephritidae. We compared the inferred molecular phylogeny with the previously published morphological cladogram. As a result, the following phylogenetic relationships were recognized: (i) monophyly of the genus Rivellia; (ii) monophyly of the R. syngenesiae species group; (iii) R. depicta and R. apicalis (which were not previously placed in any species group) were recognized as a sister group of the R. syngenesiae species group; and (iv) monophyly of the R. basilaris species group was recognized to a limited extent. These results, even though geographically limited, provide a new insight into the phylogeny of the genus Rivellia. They clearly show the utility of 16S rDNA for phylogenetic analysis of the genus Rivellia. Additional study involving samples from different geographical areas will be needed to gain a better understanding of the adaptive radiation of this species‐rich genus.  相似文献   

18.
Flatfishes (Pleuronectiformes) are a species‐rich and distinct group of fishes characterized by cranial asymmetry. Flatfishes occupy a wide diversity of habitats, including the tropical deep‐sea and freshwaters, and often are small‐bodied fishes. Most scientific effort, however, has been focused on large‐bodied temperate marine species important in fisheries. Phylogenetic study of flatfishes has also long been limited in scope and focused on the placement and monophyly of flatfishes. As a result, several questions in systematic biology have persisted that molecular phylogenetic study can answer. We examine the Pleuronectoidei, the largest suborder of Pleuronectiformes with >99% of species diversity of the order, in detail with a multilocus nuclear and mitochondrial data set of 57 pleuronectoids from 13 families covering a wide range of habitats. We combine the molecular data with a morphological matrix to construct a total evidence phylogeny that places fossil flatfishes among extant lineages. Utilizing a time‐calibrated phylogeny, we examine the timing of diversification, area of origin and ancestral temperature preference of Pleuronectoidei. We find polyphyly or paraphyly of two flatfish families, the Paralichthyidae and the Rhombosoleidae, and support the creation of two additional families—Cyclopsettidae and Oncopteridae—to resolve their non‐monophyletic status. Our findings also support the distinctiveness of Paralichthodidae and refine the placement of that lineage. Despite a core fossil record in Europe, the observed recent diversity of pleuronectoids in the Indo‐West Pacific is most likely a result of the Indo‐West Pacific being the area of origin for pleuronectoids and the ancestral temperature preference of flatfishes is most likely tropical.  相似文献   

19.

Background  

The Neogastropoda is a highly diversified group of predatory marine snails (Gastropoda: Caenogastropoda). Traditionally, its monophyly has been widely accepted based on several morphological synapomorphies mostly related with the digestive system. However, recent molecular phylogenetic studies challenged the monophyly of Neogastropoda due to the inclusion of representatives of other caenogastropod lineages (e.g. Littorinimorpha) within the group. Neogastropoda has been classified into up to six superfamilies including Buccinoidea, Muricoidea, Olivoidea, Pseudolivoidea, Conoidea, and Cancellarioidea. Phylogenetic relationships among neogastropod superfamilies remain unresolved.  相似文献   

20.
The monospecific Lamanema historically has been assigned to the Nematodirinae within the Molineidae. Inconsistencies in morphological characters, within a phylogenetic context for Nematodirinae, led to a re-evaluation of the putative relationships and taxonomic placement of Lamanema. Among 7 putative synapomorphies for Nematodirinae, Lamanema possesses only 1, large eggs. Large eggs, sporadically present in phylogenetically disparate taxa of trichostrongyles, are equivocal with respect to placement of Lamanema; it is considered that possession of this single homoplasious character alone is insufficient justification to retain the genus in Nematodirinae. Affinities with the Trichostrongylidae (Cooperiinae or Haemonchinae) have also been proposed; however, Lamanema possess neither of 2 synapomorphies that diagnose monophyly of the family. Lamanema is retained in the Molineidae and transferred to the Molineinae as it possesses all characters of the family as currently defined. The origin of Lamanema represents a secondary colonization of ruminants by molineids and provides no context for elucidating the history of the Nematodirinae and Nematodirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号