首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The herbicide Sandoz 6706 (4-chloro-5-(dimethylamino)-2-α,α,α, (trifluoro-m-tolyl)-3(2H)-pyridazinone), when applied as a preplant soil treatment at a concentration of 0.05 μg/g reduced the content of β-carotene and chlorophylls in 21-day-old wheat seedlings (Triticum aestivum L.) by 55% and 29%, respectively, without affecting the fresh or dry matter of the seedlings. At 0.8 μg/g, the herbicide reduced the content of β-carotene and chlorophyll by as much as 98%, while the fresh weight of the albino seedlings was reduced by only 24%. The effect of the herbicide on chlorophyll b was much stronger than on chlorophyll a. Time course studies of pigment synthesis in Sandoz 6706-treated seedlings showed that chlorophyll, β-carotene, cyclic xanthophylls, phytoene, phytofluene, and ζ-carotene were accumulating during the first 7 days after sowing. Later on, there was a sharp decline in the content of chlorophyll and β-carotene and a gradual reduction in the content of phytofluene, ζ-carotene, and cyclic xanthophylls; the content of phytoene remained essentially unchanged. Coinciding with the drop in content of β-carotene and chlorophyll, there was a remarkable increase in the content of epoxy phytoene. It is suggested that Sandoz 6706 might act as an inhibitor of the cyclization reaction in the biosynthetic pathway of carotenoids and that other effects, such as the bleaching of chlorophyll, are a consequence of this inhibition.  相似文献   

2.
Formation of chloroplast pigments was inhibited, and free fatty acids accumulated in mustard (Brassica juncea [L.] Coss.) cotyledons and in barley (Hordeum vulgare L.) first leaves developed after treatment with 4-chloro-5- (dimethylamino)-2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone. The inhibitor reduced the amount of fatty acids found in polar lipids (galactolipids) of barley chloroplasts and increased the amount in nonpolar lipids while having little effect on total content of bound fatty acids. The inhibition of chlorophyll formation was circumvented by D-α-tocopherol acetate, phytol, farnesol, and squalene, and by unsaturated fatty acids and their methyl esters. The protective action can be explained partially by an interaction external to the plant whereby 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone partitioned out of the aqueous phase and into the lipid phase, thus limiting availability of the inhibitor to plants. However, the amount of inhibitor reaching the cotyledons of tocopherol-protected mustard seedlngs was still in excess of the amount necessary to cause white foliage, but it failed to produce the effect. Tocopherol treatment did not prevent the 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone-induced buildup of fatty acids in mustard cotyledons but did partially circumvent the effect in barley leaves. The amount of linolenic acid relative to linoleic acid was reduced in barley leaves and chloroplasts by 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone action and this effect was circumvented by tocopherol.  相似文献   

3.
The herbicide SAN 9789 (4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl-3- (2H)pyridazinone) blocks carotenoid synthesis in growing and resting cells of Euglena at concentrations of 20 to 100 μg/ml without affecting cell viability. Although the inhibition is immediate and complete, in resting cells no decrease in already synthesized carotenoids is found indicating a lack of turnover. In cells growing in the dark, carotenoids are diluted out as the cells divide. Cells dividing in the light in the presence of SAN 9789, eventually lose viability, presumably because of photooxidations usually prevented by carotenoids. During 72 hours of light-induced plastid development in dark-grown resting cells, none of the usual carotenoids increase while phytoene accumulates, indicating that SAN 9789 blocks carotenoid synthesis at this point. Chlorophyll synthesis and membrane formation are also blocked by the herbicide, but these inhibitions appear to be secondary to the inhibition of carotenoid synthesis. That carotenoid levels are strongly correlated with and may control the synthesis of chlorophyll and the formation of plastid membranes is suggested by the following data. (a) If dark-grown dividing cells are placed in the presence of the herbicide for various periods, rested and exposed to light in the presence of the drug, different amounts of carotenoids remain in the cells and the amount of chlorophyll finally synthesized is proportional to the amount of carotenoids present. (b) Photodestruction of chlorophyll is excluded, since the same amounts of chlorophyll are formed at intensities of 10 to 100 foot-candles of light. (c) Photoconversion of protochlorophyll(ide) to chlorophyll(ide) in dark-grown cells is not blocked by the herbicide. (d) Initial rates of chlorophyll synthesis are the same in treated and nontreated cells. (e) The extent of membrane formation appears to parallel the amount of carotenoids present as judged by electron microscopy.  相似文献   

4.
Effects of the herbicide san 9789 on photomorphogenic responses   总被引:13,自引:9,他引:4       下载免费PDF全文
The herbicide, 4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)- 3(2H)-pyridazinone (San 9789), an inhibitor that prevents both carotenoid and chlorophyll accumulation and normal chloroplast development in white light, does not affect the physiological effectiveness of phytochrome in dark-and light-grown plants. Red/far red reversibility of growth inhibition, stimulation of anthocyanin synthesis, and stimulation of phenylalanine ammonia-lyase synthesis are not significantly different in plants grown with and without San 9789. Despite the complete absence of photosynthesis, flowering could be induced in the long day plant Hordeum vulgare L. when sucrose was provided to the leaves. Since the nonphotochemical reactions of phytochrome also are not affected by the herbicide, San 9789 may be used as a tool to study the phytochrome system spectrophotometrically in plants grown for relatively long periods under high intensity white light.  相似文献   

5.
6.
Seedlings of winter wheat (Triticum aestivum L. cv. Kharkov) were acclimated at 2 C in the dark in the presence of two inhibitors of linolenic acid synthesis, 4-chloro-5(dimethylamino)-2-phenyl-3(2H)pyridazinone-(BASF 13-338) and 4-chloro-5(dimethylamino)-2-(α,α,α-trifluoro-m-tolyl)- 3(2H)pyridazinone (Sandoz 6706). Although the increase in the proportion of linolenic acid generally observed at low temperature was completely inhibited, the development of freezing tolerance was unaffected. These results demonstrated that an enrichment in linolenic acid is not a prerequisite for low temperature acclimation.  相似文献   

7.
Bleaching herbicide flurtamone interferes with phytoene desaturase   总被引:1,自引:0,他引:1       下载免费PDF全文
The mode of action of the furanone herbicide flurtamone and derivatives was investigated with cress seedlings and with the unicellular cyanobacterium Anacystis. Either in the light or in the dark these compounds inhibited the formation of α- and β-carotene and all of the xanthophylls in the seedlings. Instead, phytoene, a precursor of colored carotenoids, was accumulated. In illuminated seedlings photooxidative destruction of chlorophyll was observed. The I50 value of flurtamone inhibition of carotenoid biosynthesis in intact Anacystis cells and the K1 value for interaction of flurtamone with phytoene desaturase with Anacystis thylakoids were 30 and 18 nanomoles, respectively. Concentrations of flurtamone which strongly inhibited carotenoid synthesis had no direct peroxidative activities and did not inhibit photosynthetic electron transport.  相似文献   

8.
Role of carotenoids in the phototropic response of corn seedlings   总被引:3,自引:0,他引:3       下载免费PDF全文
The herbicide, 4 chloro-5-(methylamino)-2-(α,α,α,-trifluoro-m-tolyl)-3 (2H)-pyridazinone (SAN 9789), which blocks the synthesis in higher plants of colored carotenoids but not of flavins, was used to examine the involvement of carotenoids in corn seedling phototropism. It was concluded that “bulk” carotenoids are not the photoreceptor pigment based on the results that increasing concentrations of SAN 9789 (up to 100 micromolar) did not alter the phototropic sensitivity to 380 nanometers light (using geotropism as a control) and did not increase the threshold intensities of fluence response curves for both 380 and 450 nanometers light even though carotenoid content was reduced to 1 to 2% of normal. SAN 9789 treatment, however, did reduce seedling sensitivity toward 450 nanometers light indicating that carotenoids are involved in phototropism. Carotenoids, which are located mainly in the primary leaves, may act in phototropism as an internal screen, enhancing the light intensity gradient across the seedling and thus contributing to the ability of the seedling to perceive light direction. These results indicate that the action spectra for phototropic responses can be significantly affected by the absorbance of screening pigments in vivo thus altering its shape from the in vitro absorption spectrum of the photoreceptor pigment.  相似文献   

9.
1. Maize and barley shoots have been shown to contain phylloquinone, plastoquinone, α-tocopherol (and γ-tocopherol in maize), α-tocopherolquinone and ubiquinone-9. 2. No solanesol was detected in any tissue examined. 3. In maize shoots plastoquinone and α-tocopherolquinone were localized in the chloroplast; ubiquinone was in the mitochondria. 4. Etiolated (dark-grown) shoots contained smaller amounts of phylloquinone and plastoquinone; α-tocopherolquinone was entirely absent; ubiquinone and α-tocopherol concentrations were unaffected. 5. On illumination of etiolated shoots the chloroplastidic quinones phylloquinone, plastoquinone and α-tocopherolquinone were synthesized in step with chloroplast development. α-Tocopherolquinone was not formed at the immediate expense of α-tocopherol.  相似文献   

10.
We previously found that mice fed lutein accumulated its oxidative metabolites (3′-hydroxy-ε,ε-caroten-3-one and ε,ε-carotene-3,3′-dione) as major carotenoids, suggesting that mammals can convert xanthophylls to keto-carotenoids by the oxidation of hydroxyl groups. Here we elucidated the metabolic activities of mouse liver for several xanthophylls. When lutein was incubated with liver postmitochondrial fraction in the presence of NAD+, (3′R,6′R)-3′-hydroxy-β,ε-caroten-3-one and (6RS,3′R,6′R)-3′-hydroxy-ε,ε-caroten-3-one were produced as major oxidation products. The former accumulated only at the early stage and was assumed to be an intermediate, followed by isomerization to the latter. The configuration at the C3′ and C6′ of the ε-end group in lutein was retained in the two oxidation products. These results indicate that the 3-hydroxy β-end group in lutein was preferentially oxidized to a 3-oxo ε-end group via a 3-oxo β-end group. Other xanthophylls such as β-cryptoxanthin and zeaxanthin, which have a 3-hydroxy β-end group, were also oxidized in the same manner as lutein. These keto-carotenoids, derived from dietary xanthophylls, were confirmed to be present in plasma of normal human subjects, and β,ε-caroten-3′-one was significantly increased by the ingestion of β-cryptoxanthin. Thus, humans as well as mice have oxidative activity to convert the 3-hydroxy β-end group of xanthophylls to a 3-oxo ε-end group.  相似文献   

11.
12.
Ridley SM 《Plant physiology》1977,59(4):724-732
A primary symptom of diuron (DCMU) phytotoxicity in plants is the destruction of chlorophyll. To study this process in vitro, chloroplasts from pea leaves (Pisum sativum L.) have been incubated in the light with DCMU for periods of up to 34 hours. The sequence of photodestruction of chlorophylls and carotenoids has been followed to try and establish the nature of the chloroplast protection mechanisms that are destroyed by DCMU. β-Carotene decays most rapidly, followed by chlorophyll a and xanthophylls which are destroyed in a constant ratio, followed finally by chlorophyll b. Bypassing the DCMU block in the electron transport system with an artificial electron donor provides complete protection against chlorophyll and carotenoid photodestruction. The same protection by this electron donor system is afforded to stroma-free lamellae from which soluble reductants have been removed so that NADPH formation, which has been proposed as an essential part of a protective xanthophyll cycle, is not possible. Both this and the simultaneous loss of chlorophyll a and xanthophylls tend to preclude the breakdown of a xanthophyll cycle from the possible protective mechanisms inhibited or destroyed by DCMU.  相似文献   

13.
Abstract The herbicides DCMU, bentazon, amitrole, and SAN 6706 were tested for their ability to influence the carotenoid and pro-tochlorophyll(ide) composition as well as the protochloro-phyll(ide) phototransformation and the Shibata shift in dark-grown radish seedlings (Raphanus sativus L. cv. Saxa Treib). Bentazon enhanced the formation of lutein and carotenes, while SAN 6706 suppressed the biosynthesis of carotenoids. Amitrole led to a reduced accumulation of phototransformable pro-tochlorophyll(ide). The phototransformation of pro-tochlorophyll(ide) and the Shibata shift were not affected by any of the tested herbicides, irrespective of the presence or absence of activated phytochrome. From this we conclude that herbicides inhibiting photosystem II or producing chlorosis partly affect, but do not block, carotenoid and chlorophyll biosynthesis in dark-grown plants. The main herbicide effect becomes visible only after prolonged illumination.  相似文献   

14.
Fruits of the lutescent tomato genetic line were exposed to γ-radiation at different stages of maturity to determine the effect of ionizing radiation on carotenoid synthesis in the ripening fruit. Irradiation generally resulted in the inhibition of carotenogenesis. The effect was more pronounced at the higher dosage and in less mature fruit. Lycopene synthesis was inhibited more extensively than β-carotene synthesis. The total carotenoid content was also generally lower in irradiated fruits. It was proposed that the β-carotene in the tomato fruit is formed by a pathway not involving lycopene.  相似文献   

15.
Etiolated seedlings of wild type and the chlorina f2 mutant of barley (Hordeum vulgare) were exposed to greening at either 5°C or 20°C and continuous illumination varying from 50 to 800 μmol m−2 s−1. Exposure to either moderate temperature and high light or low temperature and moderate light inhibited chlorophyll a and b accumulation in the wild type and in the f2 mutant. Continuous illumination under these greening conditions resulted in transient accumulations of zeaxanthin, concomitant transient decreases in violaxanthin, and fluctuations in the epoxidation state of the xanthophyll pool. Photoinhibition-induced xanthophyll-cycle activity was detectable after only 3 h of greening at 20°C and 250 μmol m−2 s−1. Immunoblot analyses of the accumulation of the 14-kD early light-inducible protein but not the major (Lhcb2) or minor (Lhcb5) light-harvesting polypeptides demonstrated transient kinetics similar to those observed for zeaxanthin accumulation during greening at either 5°C or 20°C for both the wild type and the f2 mutant. Furthermore, greening of the f2 mutant at either 5°C or 20°C indicated that Lhcb2 is not essential for the regulation of the xanthophyll cycle in barley. These results are consistent with the thesis that early light-inducible proteins may bind zeaxanthin as well as other xanthophylls and dissipate excess light energy to protect the developing photosynthetic apparatus from excess excitation. We discuss the role of energy balance and photosystem II excitation pressure in the regulation of the xanthophyll cycle during chloroplast biogenesis in wild-type barley and the f2 mutant.  相似文献   

16.
To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using mRNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA3. B and C hordein polypeptides and the salt-soluble proteins β-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2), the α-amylase/subtilisin inhibitor (ASI) and the inhibitor of animal cell-free protein synthesis systems (PSI) were synthesized with mRNA from developing starchy endosperm tissue. Of these proteins, β-amylase, protein Z, and CI- 1 and 2 were also synthesized with mRNA from developing aleurone cells, but ASI, PSI, and protein C were not. CI-1 and also a probable amylase/protease inhibitor (PAPI) were synthesized at high levels with mRNAs from late developing and mature aleurone. These results show that mRNAs encoding PAPI and CI-1 survive seed dessication and are long-lived in aleurone cells. Thus, expression of genes encoding ASI, PSI, protein C, and PAPI is tissue and stage-specific during seed development. Only ASI, CI-1, and PAPI were synthesized in significant amounts with mRNA from cultured aleurone layers. The levels of synthesis of PAPI and CI-1 were independent of hormone treatment. In contrast, synthesis of α-amylase (included as control) and of ASI showed antagonistic hormonal control: while GA promotes and ABA reduces accumulation of mRNA for α-amylase, these hormones have the opposite effect on ASI mRNA levels.  相似文献   

17.
18.
The intracellular and intraplastidic distribution of carotenoids has been investigated in radish seedlings grown in the presence of the herbicides amitrole and SAN 6706. Both herbicides caused bleaching and the plants became deficient in chlorophylls and the usual chloroplast cyclic carotenoids, but accumulated the acyclic carotenoid biosynthetic intermediates 15-cis-phytoene and all-trans-lycopene. In both the untreated and herbicide-treated plants all carotenoids, including phytoene and lycopene, were contained in the plastid. In all cases the normal cyclic carotenoids were located virtually exclusively in the thylakoid or prothylakoid fraction. In amitrole-treated plants, lycopene also was contained only in the thylakoid fraction, whereas phytoene, in these and in SAN 6706-treated plants, was detected in both the thylakoid fraction and an envelope preparation. Possible implications for the biosynthesis of the carotenoids are discussed.  相似文献   

19.
20.
The apparent association of ornithine decarboxylase (ODC) with rapid cell proliferation in developing tomato (Lycopersicon esculentum Mill. cv. Pearson ms-35) fruits has been previously described. Further evidence is provided by the use of two ODC inhibitors, α-difluoromethylornithine (α-DFMO) and α-methylornithine (α-MO). Fruit development was inhibited by these inhibitors if applied during the period of intensive cell division. When applied in vitro, the two inhibitors were shown to inhibit the activity of ODC but not that of arginine decarboxylase (ADC). When applied in vivo, α-DFMO, a catalytic irreversible inhibitor, caused 97.1% reduction of ODC activity in the dialyzed extract from the treated ovaries, while it had no effect on ADC. On the other hand, α-MO, a reversible inhibitor, did not reduce the activity of these two enzymes in the dialyzed extracts when applied in vivo. The dialysis procedure probably removed α-MO from the enzyme fraction. Putrescine, the product of both ODC and ADC, alleviated the inhibition of fruit development but did not restore ODC activity to the control level. These results suggest that in the young developing tomato fruit, ODC is the enzyme responsible for the synthesis of putrescine, which is essential for the early stages of fruit development. The reduced activity of ODC elicited by putrescine suggests a mechanism of feedback regulation by enzyme repression or release of an ODC anti-enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号