首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 942 毫秒
1.
The fulvous fruit bat (Rousettus leschenaulti) and the greater short-nosed fruit bat (Cynopterus sphinx) are two abundant and widely co-distributed Old World fruit bats in Southeast and East Asia. The former species forms large colonies in caves while the latter roots in small groups in trees. To test whether these differences in social organization and roosting ecology are associated with contrasting patterns of gene flow, we used mtDNA and nuclear loci to characterize population genetic subdivision and phylogeographic histories in both species sampled from China, Vietnam and India. Our analyses from R. leschenaulti using both types of marker revealed little evidence of genetic structure across the study region. On the other hand, C. sphinx showed significant genetic mtDNA differentiation between the samples from India compared with China and Vietnam, as well as greater structuring of microsatellite genotypes within China. Demographic analyses indicated signatures of past rapid population expansion in both taxa, with more recent demographic growth in C. sphinx. Therefore, the relative genetic homogeneity in R. leschenaulti is unlikely to reflect past events. Instead we suggest that the absence of substructure in R. leschenaulti is a consequence of higher levels of gene flow among colonies, and that greater vagility in this species is an adaptation associated with cave roosting.  相似文献   

2.
The purpose of this study was to test for evidence that savannah baboons (Papio cynocephalus) underwent a population expansion in concert with a hypothesized expansion of African human and chimpanzee populations during the late Pleistocene. The rationale is that any type of environmental event sufficient to cause simultaneous population expansions in African humans and chimpanzees would also be expected to affect other codistributed mammals. To test for genetic evidence of population expansion or contraction, we performed a coalescent analysis of multilocus microsatellite data using a hierarchical Bayesian model. Markov chain Monte Carlo (MCMC) simulations were used to estimate the posterior probability density of demographic and genealogical parameters. The model was designed to allow interlocus variation in mutational and demographic parameters, which made it possible to detect aberrant patterns of variation at individual loci that could result from heterogeneity in mutational dynamics or from the effects of selection at linked sites. Results of the MCMC simulations were consistent with zero variance in demographic parameters among loci, but there was evidence for a 10- to 20-fold difference in mutation rate between the most slowly and most rapidly evolving loci. Results of the model provided strong evidence that savannah baboons have undergone a long-term historical decline in population size. The mode of the highest posterior density for the joint distribution of current and ancestral population size indicated a roughly eightfold contraction over the past 1,000 to 250,000 years. These results indicate that savannah baboons apparently did not share a common demographic history with other codistributed primate species.  相似文献   

3.
Diet and habitat use of the closely related and size-overlapping sympatric Cynopterus brachyotis and C. sphinx were established in lowland dry evergreen forest, Thailand, between March 1998 and March 2000. Feces from netted bats were analyzed, and the recapture rate determined. Although both species share a set of food plants, and fruits from early successional forest contribute about half of their diet, C. brachyotis , the smaller of the two species, ate a significantly greater proportion of fruits from early successional forest than C. sphinx . The latter ate a significantly greater proportion of fruit species in larger size classes. More C. brachyotis were captured in early successional forest in almost every month, while C. sphinx is more common in old-growth forest. However, the capture rate of C. sphinx increased in early successional forest in the mid-dry season when its preferred fruits become available. The recapture rate of C. brachyotis in early successional forest was significantly higher than that of C. sphinx , and the reverse situation was observed in old-growth forest. Male C. sphinx had a significantly higher recapture rate in early successional forest than females. Fruit size and habitat use are the major determinants of resource partitioning between these size-overlapping congeners.  相似文献   

4.
For many species, climate oscillations drove cycles of population contraction during cool glacial periods followed by expansion during interglacials. Some groups, however, show evidence of uniform and synchronous expansion, while others display differences in the timing and extent of demographic change. We compared demographic histories inferred from genetic data across marine turtle species to identify responses to postglacial warming shared across taxa and to examine drivers of past demographic change at the global scale. Using coalescent simulations and approximate Bayesian computation (ABC), we estimated demographic parameters, including the likelihood of past population expansion, from a mitochondrial data set encompassing 23 previously identified lineages from all seven marine turtle species. For lineages with a high posterior probability of expansion, we conducted a hierarchical ABC analysis to estimate the proportion of lineages expanding synchronously and the timing of synchronous expansion. We used Bayesian model averaging to identify variables associated with expansion and genetic diversity. Approximately 60% of extant marine turtle lineages showed evidence of expansion, with the rest mainly exhibiting patterns of genetic diversity most consistent with population stability. For lineages showing expansion, there was a strong signal of synchronous expansion after the Last Glacial Maximum. Expansion and genetic diversity were best explained by ocean basin and the degree of endemism for a given lineage. Geographic differences in sensitivity to climate change have implications for prioritizing conservation actions in marine turtles as well as for identifying areas of past demographic stability and potential resilience to future climate change for broadly distributed taxa.  相似文献   

5.
Taxonomic relationships within the Old World fruit bat genus, Cynopterus, have been equivocal for the better part of a century. While nomenclature has been revised multiple times on the basis of phenotypic characters, evolutionary relationships among taxa representing the entire geographic range of the genus have not been determined. We used mitochondrial DNA sequence data to infer phylogenetic relationships among the three most broadly distributed members of the genus: C. brachyotis, C. horsfieldi, and C. sphinx, and to assess whether C. brachyotis represents a single widespread species, or a complex of distinct lineages. Results clearly indicate that C. brachyotis is a complex of lineages. C. sphinx and C. horsfieldi haplotypes formed monophyletic groups nested within the C. brachyotis species complex. We identified six divergent mitochondrial lineages that are currently referred to C. brachyotis. Lineages from India, Myanmar, Sulawesi, and the Philippines are geographically well-defined, while in Malaysia two lineages, designated Sunda and Forest, are broadly sympatric and may be ecologically distinct. Demographic analyses of the Sunda and Forest lineages suggest strikingly different population histories, including a recent and rapid range expansion in the Sunda lineage, possibly associated with changes in sea levels during the Pleistocene. The resolution of the taxonomic issues raised in this study awaits combined analysis of morphometric characters and molecular data. However, since both the Indian and Malaysian Forest C. brachyotis lineages are apparently ecologically restricted to increasingly fragmented forest habitat, we suggest that reevaluation of the conservation status of populations in these regions should be an immediate goal.  相似文献   

6.
How Quaternary climatic and geological disturbances influenced the composition of Neotropical forests is hotly debated. Rainfall and temperature changes during and/or immediately after the last glacial maximum (LGM) are thought to have strongly affected the geographical distribution and local abundance of tree species. The paucity of the fossil records in Neotropical forests prevents a direct reconstruction of such processes. To describe community‐level historical trends in forest composition, we turned therefore to inferential methods based on the reconstruction of past demographic changes. In particular, we modelled the history of rainforests in the eastern Guiana Shield over a timescale of several thousand generations, through the application of approximate Bayesian computation and maximum‐likelihood methods to diversity data at nuclear and chloroplast loci in eight species or subspecies of rainforest trees. Depending on the species and on the method applied, we detected population contraction, expansion or stability, with a general trend in favour of stability or expansion, with changes presumably having occurred during or after the LGM. These findings suggest that Guiana Shield rainforests have globally persisted, while expanding, through the Quaternary, but that different species have experienced different demographic events, with a trend towards the increase in frequency of light‐demanding, disturbance‐associated species.  相似文献   

7.
Understanding the way in which the climatic oscillations of the Quaternary Period have shaped the distribution and genetic structure of extant tree species provides insight into the processes driving species diversification, distribution and survival. Deciphering the genetic consequences of past climatic change is also critical for the conservation and sustainable management of forest and tree genetic resources, a timely endeavour as the Earth heads into a period of fast climate change. We used a combination of genetic data and ecological niche models to investigate the historical patterns of biogeographic range expansion of a wild fruit tree, the European crabapple (Malus sylvestris), a wild contributor to the domesticated apple. Both climatic predictions for the last glacial maximum and analyses of microsatellite variation indicated that M. sylvestris experienced range contraction and fragmentation. Bayesian clustering analyses revealed a clear pattern of genetic structure, with one genetic cluster spanning a large area in Western Europe and two other genetic clusters with a more limited distribution range in Eastern Europe, one around the Carpathian Mountains and the other restricted to the Balkan Peninsula. Approximate Bayesian computation appeared to be a powerful technique for inferring the history of these clusters, supporting a scenario of simultaneous differentiation of three separate glacial refugia. Admixture between these three populations was found in their suture zones. A weak isolation by distance pattern was detected within each population, indicating a high extent of historical gene flow for the European crabapple.  相似文献   

8.
The geographical distribution of existing populations of horse chestnut (Aesculus hippocastanum L.) in Europe is determined by past demographic events during the Quaternary. In the present study we evaluate the imprints that northward expansions originated from common ancestry at southern Europe may have left on the present patterns of genetic variation for horse chestnut across the continent. Genetic diversity and levels of population structure in a European south–north gradient, ranging from the Balkans to the Scandinavian Peninsula, were determined with Amplified Fragment Length Polymorphism (AFLP) markers in 159 loci. A family of rarefaction techniques for the estimation of gene diversity was used to exclude potential confounding effects as a result of the unequal sample sizes. The results indicate that northern populations are not more genetically depleted than southern populations, thus suggesting that diversity for this species is not correlated with latitudinal distribution. Detailed hypotheses based on prediction models for different historical events associated with human‐mediated spread of cultivation are examined for a better understanding of the current genetic patterns of regional differentiation.  相似文献   

9.
The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south-north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.  相似文献   

10.
Range expansion and contraction has occurred in the history of most species and can seriously impact patterns of genetic diversity. Historical data about range change are rare and generally appropriate for studies at large scales, whereas the individual pollen and seed dispersal events that form the basis of geneflow and colonization generally occur at a local scale. In this study, we investigated range change in Fagus sylvatica on Mont Ventoux, France, using historical data from 1838 to the present and approximate Bayesian computation (ABC) analyses of genetic data. From the historical data, we identified a population minimum in 1845 and located remnant populations at least 200 years old. The ABC analysis selected a demographic scenario with three populations, corresponding to two remnant populations and one area of recent expansion. It also identified expansion from a smaller ancestral population but did not find that this expansion followed a population bottleneck, as suggested by the historical data. Despite a strong support to the selected scenario for our data set, the ABC approach showed a low power to discriminate among scenarios on average and a low ability to accurately estimate effective population sizes and divergence dates, probably due to the temporal scale of the study. This study provides an unusual opportunity to test ABC analysis in a system with a well-documented demographic history and identify discrepancies between the results of historical, classical population genetic and ABC analyses. The results also provide valuable insights into genetic processes at work at a fine spatial and temporal scale in range change and colonization.  相似文献   

11.
Pleistocene climatic oscillations were a major force shaping genetic variability in many taxa. We analyse the relative effects of the ice ages across a latitudinal gradient in the Western Mediterranean region, testing two main predictions: (i) species with historical distributions in northern latitudes should have experienced greater loss of suitable habitat, resulting in higher extinction of historical lineages than species distributed in southern latitudes, where the effects of the ice ages were not as drastic. This would be reflected in the observation of lower diversity and number of differentiated lineages in northern areas. (ii) a signature of demographic expansion following the climate amelioration should be obvious in northern species, whereas in the south evidence of long-term effective population size stability should be observed. We used as models three species of wall lizards (Podarcis bocagei, Podarcis carbonelli and Podarcis vaucheri) that replace each other along the study area. We investigated the patterns of mitochondrial DNA diversity and subdivision and obtained demographic parameter estimates for each species. Our results suggest that P. bocagei, the northernmost species, bears low genetic diversity, a shallow coalescent history and marks of a demographic expansion. In contrast, P. vaucheri, the species with a southernmost distribution, shows deeper coalescence events, complex geographical substructure and no evidence for population growth. The species with an intermediate distribution, P. carbonelli, shows average levels of diversity, substructure and population growth. Taken together, these results conform to our main predictions and are explained by a differential influence of the ice ages on distinct latitudes.  相似文献   

12.
Hu Y  Qi D  Wang H  Wei F 《Genetica》2010,138(11-12):1297-1306
Anthropogenic habitat loss and fragmentation have been implicated in the endangerment and extinction of many species. Here we assess genetic variation and demographic history in the southernmost population of giant pandas (Ailuropoda melanoleuca) that continues to be threatened by habitat degradation and fragmentation, using noninvasive genetic sampling, mitochondrial control region sequence and 12 microsatellite loci. Compared to other giant panda populations, this population has medium-level genetic diversity based on the measure of both mitochondrial and nuclear markers. Mitochondrial DNA-based demographic analyses revealed that no historical population expansion or contraction has occurred, indicating a relatively stable population size. However, a Bayesian-coalescent method based on the observed allele distribution and allele frequencies of microsatellite clearly did detect, quantify and date a recent decrease in population size. Overall, the results indicate that a population contraction in the order of 95-96% has taken place over the last 910-999 years and is most likely due to anthropogenic habitat loss. These findings highlight the need for a greater focus on habitat protection and restoration for the long-term survival of this giant panda population.  相似文献   

13.
The climatic cycles of the Quaternary, during which global mean annual temperatures have regularly changed by 5–10°C, provide a special opportunity for studying the rate, magnitude, and effects of geographic responses to changing climates. During the Quaternary, high- and mid-latitude species were extirpated from regions that were covered by ice or otherwise became unsuitable, persisting in refugial retreats where the environment was compatible with their tolerances. In this study we combine modern geographic range data, phylogeny, Pleistocene paleoclimatic models, and isotopic records of changes in global mean annual temperature, to produce a temporally continuous model of geographic changes in potential habitat for 59 species of North American turtles over the past 320 Ka (three full glacial-interglacial cycles). These paleophylogeographic models indicate the areas where past climates were compatible with the modern ranges of the species and serve as hypotheses for how their geographic ranges would have changed in response to Quaternary climate cycles. We test these hypotheses against physiological, genetic, taxonomic and fossil evidence, and we then use them to measure the effects of Quaternary climate cycles on species distributions. Patterns of range expansion, contraction, and fragmentation in the models are strongly congruent with (i) phylogeographic differentiation; (ii) morphological variation; (iii) physiological tolerances; and (iv) intraspecific genetic variability. Modern species with significant interspecific differentiation have geographic ranges that strongly fluctuated and repeatedly fragmented throughout the Quaternary. Modern species with low genetic diversity have geographic distributions that were highly variable and at times exceedingly small in the past. Our results reveal the potential for paleophylogeographic models to (i) reconstruct past geographic range modifications, (ii) identify geographic processes that result in genetic bottlenecks; and (iii) predict threats due to anthropogenic climate change in the future.  相似文献   

14.
The evolutionary history of a species is generally affected by the combination of geological events and climate fluctuations. By analyzing the population features, genetic structure and the effective population historical dynamics of existing species, the population evolutionary history can be reestablished. In recent years, geological evidence shows that the Yilan–Yitong fault zone located in Northeast Asia experienced strong and frequent geological changes in the late Quaternary period. Species population history has been shaped by the combination of the complex climatic conditions of the Quaternary and Pleistocene glacial interglacial cycles and palaeogeological events in Northeast Asia and it has become a research focus for evolutionary biology researchers. In this study, mitochondrial and microsatellite molecular markers were used to reveal the population features, genetic structure, and the effective population historical dynamics of the Oriental fire‐bellied toad (Bombina orientalis). The results showed that the strong seismic activity of the Yilan–Yitong fault zone in the late Quaternary period was the main reason for the population differentiation of Oriental fire‐bellied toad in northeast China. The Quaternary Pleistocene glacial interglacial cycles led to the significant bottleneck effect of the western population located in the Maoer mountain area. As a result, the western population has low genetic diversity. Recent gene flow between eastern and western populations and historical evidence of population expansion proved that the dispersal behavior of the western populations was the main cause of the low genetic diversity and mitochondrial and nuclear discordance. Human economic activity may be the mainly driving factor. These evidences showed that the comprehensive influence of geology, climate, human activities and other factors should be considered in the process of exploring the evolutionary history of species.  相似文献   

15.
To assess effects of historical climate change on northern species, we quantified the population history of the arctic ground squirrel (Spermophilus parryii), an arctic-adapted rodent that evolved in Beringia and was strongly influenced by climatic oscillations of the Quaternary. Competing hypotheses for the species' population history were derived from patterns of mitochondrial (mtDNA) structure and a bioclimatic envelope model (BEM). Hypotheses invoked (1) sequential isolation of regional populations beginning with the Arctic, (2) deep isolation only across central Alaska, and (3) widespread panmixia, and were tested using coalescent methods applied to eight nuclear (nDNA) loci. The data rejected strict interpretations of all three hypotheses, but perspectives underlying each encompassed aspects of the species' history. Concordance between mtDNA and nDNA geographic structure revealed three semi-independently evolving phylogroups, whereas signatures of gene flow at nDNA loci were consistent with a historical contact between certain populations as inferred by the BEM. Demographic growth was inferred for all regions despite expectations of postglacial habitat contraction for parts of Beringia. Our results highlight the complementary perspectives on species' histories that multiple lines of evidence provide, and underscore the utility of multilocus data for resolving complex population histories relevant to understanding effects of climate change.  相似文献   

16.
The newly described molossid bat, Chaerephon atsinanana Goodman et al., 2010, endemic to eastern Madagascar, shows notably high levels of phylogeographic and genetic structure compared with allopatric Chaerephon leucogaster Grandidier, 1869 from western Madagascar. Such highly significant structuring of haplotypes among altitudinally and latitudinally stratified population groups is contrary to the expected panmixia in strong flying bats. The null model of concordance in historical demographic patterns across these two Chaerephon species was not supported. Mismatch and Bayesian skyline analyses indicated ancient stable C. atsinanana populations of constant size during the last two major Pleistocene glacial periods, making retreat into and expansion from glacial refugia an unlikely explanation for such high levels of structure, in accordance with expectations for tropical bats. Analyses were consistent with post‐refugial population expansion in the less diverse and structured C. leucogaster during the end of the last Pleistocene glacial period. We hypothesise that the pronounced genetic structuring in C. atsinanana may result from female philopatry. Furthermore, differing demographic histories of the two species may have been shaped by differing climate or habitat preferences, consistent with evidence from MaxEnt ecological niche modelling, which shows differences in variables influencing the current predicted distributions. Fossil Quaternary pollen deposits further indicate greater stability in past climatic patterns in eastern versus western Madagascar. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 18–40.  相似文献   

17.
The Quaternary cold periods in the Northwestern Pacific are thought to have heavily influenced the amount and distribution of intraspecific genetic variation in marine fishes. To estimate the demographic history and genetic structure of Lateolabrax maculatus and L. japonicus in the Northwestern Pacific, 256 individuals were sampled from 19 localities throughout the distribution range of the two species. Mitochondrial DNA variation was analyzed using DNA sequence data from the cytochrome b gene and control region. Nucleotide diversity was much higher in L. japonicus (0.030) than in L. maculatus (0.012). The demographic history of the two species was examined using neutrality tests and mismatch distribution analyses and results indicated Pleistocene population expansion in both species. Estimates of population expansion time suggested earlier population expansion in L. japonicus than in L. maculatus. Molecular variance analyses showed differential genetic structuring for these two closely related species. The results indicated that L. japonicus is panmictic throughout its range. In contrast, populations of L. maculatus showed statistically significant levels of genetic structuring. Pattern of isolation by distance was observed in L. maculatus, suggesting that L. maculatus is in genetic equilibrium. In contrast, L. japonicus did not exhibit isolation by distance.  相似文献   

18.
Roberts TE 《Molecular ecology》2006,15(8):2183-2199
The comparative phylogeography of widespread, codistributed species provides unique insights into regional biodiversity and diversification patterns. I used partial DNA sequences of the mitochondrial genes ND2 and cyt b to investigate phylogeographic structure in three widespread Philippine fruit bats. Ptenochirus jagori is endemic to the oceanic region of the Philippines and is most abundant in lowland primary forest. Macroglossus minimus and Cynopterus brachyotis are most common in disturbed and open habitats and are not endemic. In all three, genetic differentiation is present at multiple spatial scales and is associated to some degree with Pleistocene landbridge island groups. In P. jagori and C. brachyotis, genetic distance is correlated with geographic distance; in C. brachyotis and M. minimus, it is correlated with the sea-crossing distance between islands. P. jagori has the least overall genetic structure of these three species, whereas C. brachyotis and M. minimus have more geographic association among haplotypes, suggesting that phylogeographic patterns are linked to ecology and habitat preference. However, contrary to expectation, the two widespread, disturbed habitat species have more structure than the endemic species. Mismatch distributions suggest rapid changes in effective population size in C. brachyotis and P. jagori, whereas M. minimus appears to be demographically more stable. Geologic and geographic history are important in structuring variation, and phylogeographic patterns are the result of dynamic long-term processes rather than simply reflecting current conditions.  相似文献   

19.
Ailanthus altissima (Mill.) Swingle, a temperate tree species, has a wide distribution in China. To infer its refugia and patterns of migration during past climatic changes in China, genetic variations among different populations were studied. Gene sequences of three chloroplast DNA spacer regions, psbA-trnH, trnL-trnF, andtrnD-trnT, were obtained from 440 individuals of 44 populations. The distribution of haplotype and the relationships among them were investigated by haplotype network. In addition, the genetic diversity of the sampled regions was inferred, and the biogeographic history was also reconstructed. Twelve haplotypes were identified, among which, five were unique. The phylogenetic analysis and geographical distribution of haplotypes indicate that multiple glacial refugia existed in mainland China during the Quaternary oscillations. Due to the combined effects of contiguous range expansion and allopatric fragmentation, significant genetic structure was not found in this study. Based on biogeographic and demographic analysis, three main dispersal routes were identified for the major haplotypes, whereas others were more likely localized demographic expansion.  相似文献   

20.
Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai–Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well‐differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (FST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号