首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine proteases and matrix metalloproteinases (MMPs) are important factors in the degradation of organic matrix components of bone. Osteoprotegerin (OPG) is an osteoblast-secreted decoy receptor that inhibits osteoclast differentiation and activation. This study investigated the direct effects of human OPG on cathepsin K, MMP-9, MMP-2, and tissue inhibitors of metalloproteinases (TIMP1 and TIMP2) expressed by purified rabbit osteoclasts. The expression of two osteoclast markers, namely tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was inhibited by 100 ng/mL hOPG, whereas MMP-9 expression was enhanced. Gelatinase activities were measured using a zymographic assay, and hOPG was shown to enhance both pro-MMP-9 and MMP-2 activities. Concomitantly, TIMP1 expression was greatly stimulated by hOPG, whereas TIMP2 mRNA levels were not modulated. Overall, these results show that hOPG regulates the proteases produced by purified osteoclasts differentially, producing a marked inhibitory effect on the expression of cathepsin K, the main enzyme involved in bone resorption.  相似文献   

2.
Tetracycline antibiotics, including doxycycli\e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.  相似文献   

3.
The aim of our present study is to investigate the interaction between angiotensin II (ANG II) and sympathetic nervous system (SNS) on matrix metalloproteinase MMP-2 and MMP-9 expression and activity in juvenile rat aorta under normal conditions. Sympathectomy with guanethidine and blockade of the ANG II receptors (AT1R) by losartan were performed alone or in combination on new-born rats. mRNA, protein expression and activity of MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymography, respectively. MMP-2 mRNA and protein amount were decreased after sympathectomy or AT1R blockade and an additive effect was observed after combined treatment. However, MMP-9 expression was reduced to the same level in the three treated groups. There were some detectable gelatinolytic activity of the MMPs in both control and treated rats. We concluded that ANG II stimulates directly and indirectly (via sympathostimulator pathway) the MMP-2 expression but seems unable to affect MMP-9 expression through direct pathway. Combined inhibition of SNS and ANG II were more efficient than a single inhibition in reducing MMP amounts in rat vessels.  相似文献   

4.
Tartrate-resistant acid phosphatase (TRAP) is a metallophosphoesterase participating in osteoclast-mediated bone turnover. Activation of TRAP is associated with the redox state of the di-iron metal center as well as with limited proteolytic cleavage in an exposed loop domain. The cysteine proteinases cathepsin B, L, K, and S as well as the matrix metalloproteinase-2, -9, -13, and -14 are expressed by osteoclasts and/or other bone cells and have been implicated in the turnover of bone and cartilage. To identify proteases that could act as activators of TRAP in bone, we report here that cathepsins K and L, in contrast to the matrix metalloproteinases, efficiently cleaved and activated recombinant TRAP in vitro. Activation of TRAP by cathepsin K/L was because of increases in catalytic activity, substrate affinity, and sensitivity to reductants. Processing by cathepsin K occurred sequentially by an initial excision of the loop peptide Gly(143)-Gly(160) followed by the removal of a Val(161)-Ala(162) dipeptide at the N terminus of the C-terminal 16-kDa TRAP subunit. Cathepsin L initially released a shorter Gln(151)-Gly(160) peptide and completed processing at Ser(145) or Gly(143) at the C terminus of the N-terminal 23-kDa TRAP subunit and at Arg(163) at the N terminus of the C-terminal 16-kDa TRAP subunit. Mutation of Ser(145) to Ala partly mimicked the effect of proteolysis on catalytic activity, identifying Ser(145) as well as Asp(146) (Funhoff, E. G., Ljusberg, J., Wang, Y., Andersson, G., and Averill, B. A. (2001) Biochemistry 40, 11614-11622) as repressive amino acids of the loop region to maintain the TRAP enzyme in a catalytically latent state. The C-terminal sequence of TRAP isolated from rat bone was consistent with cathepsin K-mediated processing in vivo. Moreover, cathepsin K, but not cathepsin L, co-localized with TRAP in osteoclast-resorptive compartments, supporting a role for cathepsin K in the extracellular processing of monomeric TRAP in the resorption lacuna.  相似文献   

5.
Osteoclasts are macrophage-derived polykaryons that degrade bone in an acidic extracellular space. This differentiation includes expression of proteinases and acid transport proteins, cell fusion, and bone attachment, but the sequence of events is unclear. We studied two proteins expressed at high levels only in the osteoclast, cathepsin K, a thiol proteinase, and tartrate-resistant acid phosphatase (TRAP), and compared this expression with acid transport and bone degradation. Osteoclastic differentiation was studied using human apheresis macrophages cocultured with MG63 osteosarcoma cells, which produce cytokines including RANKL and CSF-1 that mediate efficient osteoclast formation. Immunoreactive cathepsin K appeared at 3-5 days. Cathepsin K activity was seen on bone substrate but not within cells, and cathepsin K increased severalfold during further differentiation and multinucleation from 7 to 14 days. TRAP also appeared at 3-5 d, independently of cell fusion or bone attachment, and TRAP activity reached much higher levels in osteoclasts attached to bone fragments. Two proteinases that occur in the precursor macrophages, cathepsin B, a thiol proteinase related to cathepsin K, and an unrelated lysosomal aspartate proteinase, cathepsin D, were also studied to determine the specificity of the differentiation events. Cathepsin B occurred at all times, but increased two- to threefold in parallel with cathepsin K. Cathepsin D activity did not change with differentiation, and secreted activity was not significant. In situ acid transport measurements showed increased acid accumulation after 7 days either in cells on osteosarcoma matrix or attached to bone, but bone pit activity and maximal acid uptake required 10-14 days. We conclude that TRAP and thiol proteinase expression begin at essentially the same time, and precede cell fusion and bone attachment. However, major increases in acid secretion and proteinases expression continue during cell fusion and bone attachment from 7 to 14 days.  相似文献   

6.
The hypothesis of the present work was that expression of matrix metalloproteinase-13 (MMP-13, collagenase-3) would be induced during conditions involving important matrix remodeling such as ligament maturation, scar healing and joint instability. Therefore, MMP-13 expression in the medial collateral ligament (MCL) during the variable situations of tissue maturation and healing was assessed. MMP-13 expression in three intra-articular connective tissues of the knee (i.e. articular cartilage, menisci and synovium) following the transection of the anterior cruciate ligament of the knee was evaluated at 3 and 8 weeks post-injury. MMP-13 mRNA (semi-quantitative RT-PCR) and protein (immunohistochemistry and Western blotting) were detected in all of the tissues studied. Significantly higher MCL mRNA levels for MMP-13 were detected during the early phases of tissue maturation (i.e. 29 days in utero and 2-month-old rabbits) compared to later phases (5- and 12-month-old rabbits). This pattern of expression was recapitulated following MCL injury, with very high levels of expression in scar tissue at 3 weeks post-injury and then a decline to levels not significantly different from control values by 14 weeks. Elevated mRNA levels correlated with increased protein levels for MMP-13 in both menisci and synovium following the transection of the anterior cruciate ligament and during medial collateral ligament healing. These results indicate that MMP-13 expression is regulated by a number of variables and that high levels of expression occur in situations when connective tissue remodeling is very active.  相似文献   

7.
8.
Receptor activator of NF-kB Ligand (RANKL) is an essential requirement for osteoclastogenesis and its activity is neutralized by binding to the soluble decoy receptor osteoprotegerin (OPG). The purpose of this work was to study the effects of RANKL and OPG during osteoclastogenesis using the murine monocytic cell line RAW 264.7 that can differentiate into osteoclasts in vitro. RAW 264.7 cells plated at 10(4) cells/cm(2) and cultured for 4 days in the presence of RANKL represent the optimal culture conditions for osteoclast differentiation, with an up-regulation of all parameters related to bone resorption: tartrate resistant acid phosphatase (TRAP), calcitonin receptor (CTR), RANK, cathepsin K, matrix metalloproteinase (MMP)-9 mRNA expressions. RANKL and OPG biological effects vary according to the differentiation state of the cells: in undifferentiated RAW 264.7 cells, TRAP expression was decreased by OPG and RANKL, RANK expression was inhibited by OPG, while MMP-9 and cathepsin K mRNA expressions were not modulated. In differentiated RAW 264.7 cells, RANKL and OPG both exert an overall inhibitory effect on the expression of all the parameters studied. In these experimental conditions, OPG-induced MMP-9 inhibition was abrogated in the presence of a blocking anti-RANKL antibody, suggesting that part of OPG effects are RANKL-dependent.  相似文献   

9.
Neutrophil elastase (NE) activity is increased in many diseases. Other families of proteases, including cathepsins and matrix metalloproteases (MMPs), are also present at elevated levels in similar disease conditions. We postulated that NE could induce expression of cathepsins and MMPs in human macrophages. NE exposure resulted in macrophages, producing significantly greater amounts of cathepsin B and latent and active MMP-2. Cathepsin B and MMP-2 activities were decreased in Pseudomonas-infected NE knockout mice compared with wild-type littermates. We also demonstrate that NE can activate NF-kappaB in macrophages, and inhibition of NF-kappaB resulted in a reduction of NE-induced cathepsin B and MMP-2. Also, inhibition of TLR-4 or transfection of macrophages with dominant-negative IL-1R-associated kinase-1 resulted in a reduction of NE-induced cathepsin B and MMP-2. This study describes for the first time a novel hierarchy among proteases whereby a serine protease up-regulates expression of MMPs and cathepsins. This has important implications for therapeutic intervention in protease-mediated diseases.  相似文献   

10.
Regulation of osteoclast protease expression by RANKL   总被引:9,自引:0,他引:9  
Receptor activator of NF-kappaB ligand (RANKL) is essential for osteoclast (OC) differentiation/activation and functions through its receptor RANK at the surface of the osteoclastic cells. This study investigated for the first time the direct effects of hRANKL on protease/protease inhibitor expressions and protease activities in purified rabbit osteoclast cultures, using semi-quantitative RT-PCR, gelatin zymography, and enzymatic assays. RANKL was shown to exert in vitro pro-resorptive effects by increasing osteoclast marker expressions (Tartrate resistant acid phosphatase (TRAP) and cathepsin K), MMP-9 expression, and pro-MMP-9 activity and by diminishing TIMP-1 expression, leading to an up-regulation of the MMP-9/TIMP-1 ratio.  相似文献   

11.
Cathepsin K, a lysosomal papain-like cysteine protease, forms collagenolytically highly active complexes with chondroitin sulfate and represents the most potent mammalian collagenase. Here we demonstrate that complex formation with glycosaminoglycans (GAGs) is unique for cathepsin K among human papain-like cysteine proteases and that different GAGs compete for the binding to cathepsin K. GAGs predominantly expressed in bone and cartilage, such as chondroitin and keratan sulfates, enhance the collagenolytic activity of cathepsin K, whereas dermatan, heparan sulfate, and heparin selectively inhibit this activity. Moreover, GAGs potently inhibit the collagenase activity of other cysteine proteases such as cathepsins L and S at 37 degrees C. Along this line MMP1-generated collagen fragments in the presence of GAGs are stable against further degradation at 28 degrees C by all cathepsins but cathepsin K, whereas thermal destabilization at 37 degrees C renders the fragments accessible to all cathepsins. These results suggest a novel mechanism for the regulation of matrix protein degradation by GAGs. It further implies that cathepsin K represents the only lysosomal collagenolytic activity under physiologically relevant conditions.  相似文献   

12.
Proteolytic processing of laminin-332 by matrix metalloproteinase (MMP)-2 and MMP-14 has been shown to yield fragments that are promigratory for epithelial cells. During acute and chronic inflammation, proteases are elaborated by neutrophils and macrophages that can degrade basement membranes. We investigated the susceptibility of laminin-332 to degradation by the following neutrophil and macrophage proteases: neutrophil elastase (NE), cathepsin G, proteinase-3, and MMPs-2, -8, -9, and -12. Protease-specific differences were seen in the capacity to cleave the individual chains of laminin-332. NE and MMP-12 showed the greatest activity toward the gamma2 chain, generating a fragment similar in size to the gamma2x fragment generated by MMP-2. The digestion pattern of laminin-332 by degranulated neutrophils was nearly identical to that generated with NE alone. Digestion by supernatants of degranulated neutrophils was blocked by an inhibitor of NE, and NE-deficient neutrophils were essentially unable to digest laminin-332, suggesting that NE is the major neutrophil-derived protease that degrades laminin-332. In vivo, laminin gamma2 fragments were found in the bronchoalveolar lavage fluid of wild-type mice treated with lipopolysaccharide, whereas that obtained from NE-deficient mice showed a different cleavage pattern. In addition, NE cleaved a synthetic peptide derived from the region of human laminin gamma2 containing the MMP-2 cleavage site, suggesting that NE may generate laminin-332 fragments that are also promigratory. Both laminin-332 fragments generated by NE digestion and NE-digested laminin gamma2 peptide were found to be chemotactic for neutrophils. Collectively, these data suggest that degradation of laminin-332 by NE generates fragments with important biological activities.  相似文献   

13.
The cathepsins are a family of cysteine proteases that have been broadly implicated in proteolytic processes during cell growth, cell development, and normal adult cellular function. Cathepsin L is a major secretory product of rat and mouse Sertoli cells, the absence of which in furless mice is associated with atrophy of some seminiferous tubules. However, furless mice produce viable sperm, suggesting the possibility that other members of the cathepsin family of proteases may complement cathepsin L action in the testis. Our objective herein was to begin to test this hypothesis. To this end, we first utilized cDNA microarray technology to identify the members of the cathepsin gene family expressed by freshly isolated adult rat Sertoli cells. This approach, complemented by Northern blot analyses, showed that in addition to cathepsin L, cathepsin K is highly and specifically expressed in Sertoli cells. As is also true of cathepsin L, cathepsin K mRNA was found to be expressed by Sertoli cells at specific stages of the cycle of the seminiferous epithelium, with maximal expression at stages VI-VII. The use of immunocytochemical methods revealed that cathepsin K protein localizes to the cytoplasm of Sertoli cells at stages VI-VIII, to small punctuate lysosomes at stages I-VIII and XIII-XIV, and to early and late residual bodies at stages IX-XII. This localization was found to be similar to that of cathepsin L. The similarity in the expression and localization of cathepsin K and cathepsin L suggest that the two proteases may have similar functions. If true, this might explain the fertility of furless mice. Further, the results suggest that cathepsin K, in both its secreted and lysosomal forms, may play a role in the degradation of Sertoli cell residual bodies.  相似文献   

14.
Cysteine proteases are involved in many diverse cellular processes ranging from processing of precursor proteins to intracellular degradation. In an effort to identify novel cysteine proteases, we used the polymerase chain reaction and primers directed against the catalytic sites of previously cloned cysteine proteases. From rat brain mRNA, a 600-base pair band was amplified; cloning and partial sequence analysis of this band resulted in the identification of cathepsins B and L and five novel sequences. The novel cDNAs contained a number of residues conserved in lysosomal cysteine proteases, including the active site residue His159 (papain numbering). In addition, the amino acid homology between the novel sequences and either cathepsins B, L, or H, ranged from 63 to 32%. The insert with highest homology was used to screen a rat brain cDNA library; a 1334-base pair cDNA was isolated and the nucleotide sequence determined. This sequence encodes an open reading frame of 330 amino acids which is 82% homologous to human cathepsin S, suggesting that this sequence represents rat cathepsin S. Northern blot analysis for rat cathepsin S revealed tissue-specific expression distinct from the distribution of cathepsin B and L. The regulation of expression of rat cathepsin S mRNA in response to thyroid-stimulating hormone was studied in a rat thyroid cell line FRTL-5. The level of cathepsin S mRNA was substantially increased in response to thyroid-stimulating hormone, whereas cathepsin B and cathepsin L mRNA levels were not altered by this treatment. A portion of cDNA encoding the predicted mature protein of rat cathepsin S was expressed as a glutathione S-transferase-fusion protein. The affinity-purified protein exhibited proteolytic activity with properties similar to bovine cathepsin S. Taken together, these results imply highly specific functions for cathepsin S.  相似文献   

15.
The tissue distribution of mRNAs encoding two lysosomal proteases, cathepsin B and cathepsin D, was examined using cloned cDNAs to probe Northern and dot blots of RNAs extracted from various rat tissues. Cathepsin B mRNA showed a wide range of variation in expression in the tissues analyzed with the highest concentrations found in spleen and kidney, while the cathepsin D mRNA levels were relatively uniform in these same tissues. Significant quantities of cathepsin B mRNA were detected in total RNA from isolated islets of Langerhans but was not detectable in equivalent amounts of RNA from whole pancreas. The wide variations in tissue levels of cathepsin B mRNA suggest that tissue specific controls may regulate its expression and are compatible with the participation of this protease in specialized cellular functions other than intralysosomal protein degradation.  相似文献   

16.
Rheumatoid synovial fibroblasts (RSF) are activated by toll-like receptor (TLR) signaling pathways during the pathogenesis of rheumatoid arthritis (RA). Cathepsin K is highly expressed by RSF, and is known to play a key role in the degradation of type I and type II collagen. Cathepsin K is considered to be implicated in the degradation of bone and cartilage in RA. Recent observations have shown that hyaluronan (HA) is an important inhibitor of inflammation. In the present study, we show that lipopolysaccharide (LPS) stimulation significantly increases cathepsin K expression by real-time PCR and western blotting analysis via a TLR-4 signaling pathway. Furthermore, we demonstrate that HA suppresses LPS-induced cathepsin K expression, which is dependent on CD44 but not intercellular adhesion molecule-1 (ICAM-1) interaction. We also show that HA suppresses LPS-induced matrix metalloproteinase-1 (MMP-1) expression, which is dependent on both CD44 and ICAM-1 interaction. We conclude that the anti-inflammatory effect of HA occurs through crosstalk between more than one HA receptor. Our study provides evidence for HA mediated suppression of LPS-induced cathepsin K and MMP-1 expression, supporting a protective effect of HA in RA.  相似文献   

17.
Many studies have shown that mechanical forces can alter collagen degradation by proteases, and this mechanochemical effect may potentially serve an important role in determining extracellular matrix content and organization in load-bearing tissues. However, it is not yet known whether mechano-sensitive degradation depends on particular protease isoforms, nor is it yet known whether particular degradation byproducts can be altered by mechanical loading. In this study, we tested the hypothesis that different types of proteases exhibit different sensitivities to mechanical loading both in degradation rates and byproducts. Decellularized porcine pericardium samples were treated with human recombinant matrix metalloproteinases-1, ?8, ?9, cathepsin K, or a protease-free control while subjected to different levels of strain in a planar, biaxial mechanical tester. Tissue degradation was monitored by tracking the decay in mechanical stresses during displacement control tests, and byproducts were assessed by mass spectrometry analysis of the sample supernatant after degradation. Our key finding shows that cathepsin K-mediated degradation of collagenous tissue was enhanced with increasing strain, while MMP1-, MMP8-, and MMP9-mediated degradation were first decreased and then increased by strain. Degradation induced changes in tissue mechanical properties, and proteomic analysis revealed strain-sensitive degradome signatures with different ECM byproducts released at low vs. high strains. This evidence suggests a potentially new type of mechanobiology wherein mechanical forces alter the degradation products that can provide important signaling feedback functions during tissue remodeling.  相似文献   

18.
An acid proteolytic activity has been found in cell culture supernatants from long-term cultivations of hybridoma cells in hollow fibre bioreactors using serum free medium. The proteolytic activity has now been further characterized and the main results were: (1) the proteolytic activity showed a maximum around pH 3 and declined essentially to zero at pH 8; (2) the activity was specifically inhibited by pepstatin A; (3) the acid proteases consisted of two sets of closely spaced bands with apparent molecular weights of 40-45K and 90-105K, respectively; (4) the protease bands (40-45K and 90-105K) were reactive with anti-human cathepsin D; (5) the IEP values of the acid proteases ranged from pH 4.55-6.5. Furthermore, IgG incubation with the acid proteases isolated from hybridoma cells yielded fragments similar to those found in serum-free hollow fibre cell culture supernatants. These results indicated that the IgG fragments are the result of degradation by cathepsin D like proteases released after cell death or cell lysis.  相似文献   

19.
Interleukin-17 (IL-17) is produced exclusively by activated T cells and neutrophils, and stimulates osteoclastic bone resorption via osteoblasts by inducing the expression of “receptor activator of NF-κB (RANK) ligand” (RANKL). However, the direct effects of IL-17 on the differentiation of osteoclast precursors into osteoclasts and on the function of osteoclasts have not been clarified. Therefore, we examined the effects of IL-17A on the differentiation of osteoclast precursors using RAW264.7 cells and also on the expression of carbonic anhydrase II (CA II), cathepsin K, matrix metalloproteinases-9 (MMP-9), RANK, c-fms, and IL-17 receptors in these cells. The cells were cultured with or without 0.1, 1.0, 10 or 50 ng/mL IL-17 in the presence of soluble RANKL for up to 10 days. The CA II, cathepsin K, and MMP-9 mRNA and protein expression levels were examined using real-time PCR and Western blotting, respectively. The mRNA expression levels of RANK, c-fms, and IL-17 receptors were monitored by real-time PCR. Osteoclast differentiation was estimated using tartrate-resistant acid phosphatase (TRAP) staining of the cells. TRAP-positive cells were observed after day 5 of culture, and the number of cells decreased in the presence of 10 and 50 ng/mL IL-17A at days 5 and 7. In the presence of IL-17A, the expressions of cathepsin K, MMP-9 and c-fms decreased markedly on days 5 and/or 7 of culture, whereas the expression of CA II and IL-17 receptor (type A) increased remarkably at days 3 and 7, respectively. The expression of RANK and IL-17 receptor (type C) was not affected by the addition of IL-17A. These results suggest that the differentiation of osteoclast precursors into osteoclasts is suppressed at high concentrations of IL-17A. Furthermore, IL-17A suppresses the hydrolysis of matrix proteins during bone resorption by decreasing the production of cathepsin K and MMP-9 in osteoclasts.  相似文献   

20.
In situ zymography provides a tool to localize proteolytic activity in tissues in vivo. However, it has been difficult to discriminate between the proteases responsible for the detected activity. We used a selective tissue-permeable gelatinase inhibitor, the CTTHWGFTLC-peptide (CTT) in inflamed human gingiva. The CTT-peptide was evidenced to home, target to, and selectively inhibit the areas of gelatinolytic activity in inflamed human gingiva expressing MMP-2 and -9. Gelatinolytic activity, MMP-9 immunoreactivity, and mRNA expression as well as CD-45-positive inflammatory cells colocalized well in the inflamed human gingival connective tissue. Gelatinolytic activity corresponding to MMP-2 colocalized with laminin-5 gamma2-chain immunoreactivity and was detected in the close vicinity of the sulcular basement membrane region. Furthermore, the CTT-peptide inhibited beta-caseinolysis by human MMP-2 and MMP-9 as well as laminin-5 gamma2-chain degradation by MMP-2 in vitro. Thus, the CTT-peptide may prove to be a useful tool (i) to discriminate between gelatinolytic proteases detected by in situ zymography and (ii) to preventMMP-2-dependent induction of epithelial cell migration and gelatinase-dependent tissue destruction in inflammatory and malignant diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号