共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological effects of a long term exposure to low concentrations of NH3 , NO2 and SO2 on Douglas fir (Pseudotsuga menziesii) 总被引:1,自引:0,他引:1
L. W. A. van Hove M. E. Bossen M. G. J. Mensink O. van Kooten 《Physiologia plantarum》1992,86(4):559-567
The above-ground parts of two years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed to filtered air, NH3, NO2+, SO2 (66, 96 and 95 μg m?3, respectively), to a mixture of NO2+NH3 (55 + 82 μg m?3) or SO2+NO2 (128 + 129 μg m?3), for 8 months in fumigation chambers. Both chlorophyll fluorescence and gas exchange measurements were carried out on shoots which had sprouted at the beginning of the exposure period. The chlorophyll fluorescence measurements were performed after 3 and 5 months of exposure (average shoot age 70 and 140 days, respectively). Light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. In addition, light response curves of net CO2 assimilation were determined after 5 months of exposure. After 3 months of exposure (average shoot age 70 days) all exposure treatments showed a lower maximum electron transport rate (Jmax) as compared to the control shoots (filtered air). A large reduction (45%) was observed for shoots exposed to SO2+NO2. During the exposure period between 3 and 5 months (average shoot age 70 and 140 days, respectively) a decrease of Jmax was observed for all treatments. Jmax had further declined some time after termination of the exposure, when average shoot age was 310 days. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum net CO2 assimilation (Pmax) as compared to the control shoots. However, shoots exposed to NO2 showed no reduction and even a higher Pmax was observed for shoots exposed to NH3 or NO2+NH3. Needles of these treatments also showed a higher chlorophyll content which might explain the contradictory results obtained for these treatments: the increased amount of photosynthetic units counteracts the reduction in Jmax and consequently no reduction in Pmax is measured. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum stomatal conductance (gs). However, the stomatal opening was larger than could be expected on basis of their (maximum) CO2 assimilation rate. Consequently, water use efficiency of these shoots was lower than that of the control shoots. Also shoots exposed to NO2 had a lower water use efficiency due to a significantly higher maximum gs. Shoots exposed to NH3 showed a high transpiration rate in the dark, indicating imperfect stomatal closure. 相似文献
2.
Physiological effects of long-term exposure to low and moderate concentrations of atmospheric NH3 on poplar leaves 总被引:2,自引:0,他引:2
L. W. A. VAN HOVE O. VAN KOOTEN E. H. ADEMA W. J. VREDENBERG G. A. PIETERS 《Plant, cell & environment》1989,12(9):899-908
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3 . These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2 O and ambient NH3 -concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2 -assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata. 相似文献
3.
Physiological effects of long term exposure to low concentrations of SO2 and NH3 on poplar leaves 总被引:1,自引:0,他引:1
L. W. A. van Hove O. van Kooten K. J. van Wijk W. J. Vredenberg E. H. Adema G. A. Pieters 《Physiologia plantarum》1991,82(1):32-40
Shoots of poplar (Populus euramericana L. cv. Flevo) were exposed to filtered air, SO2, NH3 or a mixture of SO2 and NH3 for 7 weeks in fumigation chambers. After this exposure gas exchange measurements were carried out using a leaf chamber. As compared to leaves exposed to filtered air, leaves pretreated with 112 μg m?3 SO2 showed a small reduction in maximum CO2 assimilation rate (Pmax) and stomatal conductance (gs). They also showed a slightly higher quantum yield and dark respiration. In addition, the fluorescence measurements indicated that the Calvin cycle of the leaves pretreated with 112 μg m?3 SO2 was more rapidly activated after transition from dark to light. An exposure to 64 μg m?3 NH3 had a positive effect on Pmax, stomatal conductance and NH3 uptake of the leaves. This positive effect was counteracted by an SO2 concentration of 45 μg m?3. The exposure treatments appeared to have no effect on the relationship between net CO2-assimilation and gs. Also, no injury of the leaf cuticle or of epidermal cells was observed. Resistance analysis showed that NH3 transfer into the leaf can be estimated from data on the boundary layer and stomatal resistance for H2O transfer and NH3 concentration at the leaf surface, irrespective of whether the leaves are exposed for a short or long time to NH3 or to a mixture of NH3 and SO2. In contrast SO2 uptake into the leaves was only partly correlated to the stomatal resistance. The results suggest a large additional uptake of this gas by the leaves. The possibility of a difference in path length between SO2 and H2O molecules is proposed. 相似文献
4.
5.
Extracts of Douglas fir ( Pseudotsuga menziesii [Mirb.] Franco) shoots were purified by reversed and normal phase HPLC; gibberellin (GA)-like compounds detected by radioimmunoassay with antibodies against GA4 and the Tan-ginbozu dwarf rice micro-drop biossay were analyzed by GC-MS. Three major components were identified as GA4 , GA7 , and GA9 while smaller amounts of GA1 , GA3 and putative GA9 -glucosyl ester were also present. 相似文献
6.
7.
Douglas fir (Pseudotsuga menziesii) variety glauca (DFG) but not the variety viridis (DFV) showed symptoms of manganese (Mn) toxicity in some field sites. We hypothesized that these two varieties differed in Mn metabolism. To test this hypothesis, biomass partitioning, Mn concentrations, subcellular localization and 54Mn-transport were investigated. Total Mn uptake was three-times higher in DFG than in DFV. DFV retained > 90% of 54Mn in roots, whereas > 60% was transported to the shoot in DFG. The epidermis was probably the most efficient Mn barrier since DFV contained lower Mn concentrations in cortical cells and vacuoles of roots than DFG. In both varieties, xylem loading was restricted and phloem transport was low. However, sieve cells still contained high Mn concentrations. DFV displayed higher biomass production and higher shoot : root ratios than DFG. Our results clearly show that both varieties of Douglas fir differ significantly in Mn-uptake and allocation patterns rendering DFG more vulnerable to Mn toxicity. 相似文献
8.
9.
The ectomycorrhizal fungal associations of Douglas fir ( Pseudotsuga menziesii D. Don) and bishop pine ( Pinus muricata D. Don) were investigated in a mixed forest stand. We identified fungi directly from field-collected ectomycorrhizal (ECM) root tips using PCR-based methods. Sixteen species of fungi were found, of which twelve associated with both hosts. Rhizopogon parksii Smith was specific to Douglas fir. Three other species colonized only one of the hosts, but were too infrequent to draw conclusions about specificity. Seventy-four percent of the biomass of ECM root tips sampled in the stand were colonized by members of the Thelephoraceae and Russulaceae. All 12 species of fungi that associated with both tree species did so within a 10×40 cm soil volume, suggesting that individual fungal genotypes linked the putatively competing tree hosts. 相似文献
10.
11.
Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings 总被引:1,自引:0,他引:1
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure. 相似文献
12.
A. Noormets A. Sôber E. J. Pell R. E. Dickson G. K. Podila J. Sôber J. G. Isebrands & D. F. Karnosky 《Plant, cell & environment》2001,24(3):327-336
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes. 相似文献
13.
R. H. Jongbloed J. M. A. M. Clement G. W. F. H. Borst-Pauwels 《Physiologia plantarum》1991,83(3):427-432
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+. 相似文献
14.
15.
16.
A combined model to simulate CO2 and H2O gas exchange at the leaf scale was parameterized using data obtained from in situ leaf‐scale observations of diurnal and seasonal changes in the CO2 and H2O gas exchange of four temperate deciduous broad‐leaved trees using a porometric method. The model consists of a Ball et al. type stomatal conductance submodel [Ball, Woodrow & Berry, pp. 221–224 in Progress in Photosynthesis Research (ed. I. Biggins), Martinus‐Nijhoff Publishers, Dordrecht, The Netherlands, 1987] and a Farquhar et al. type biochemical submodel of photosynthesis (Farquhar, von Caemmerer & Berry, Planta 149, 78–90, 1980). In these submodels, several parameters were optimized for each tree species as representative of the quantitative characteristics related to gas exchange. The results show that the seasonal physiological changes of Vcmax25 in the biochemical model of photosynthesis should be used to estimate the long‐term CO2 gas exchange. For Rd25 in the biochemical model of photosynthesis and m in the Ball et al. type stomatal conductance model, the difference should be counted during the leaf expansion period. 相似文献
17.
18.
19.
Effects of elevated CO2 and/or O3 on growth, development and physiology of wheat (Triticum aestivum L.) 总被引:1,自引:0,他引:1
Two cultivars of spring wheat (Triticum aestivum L. cvs. Alexandria and Hanno) and three cultivars of winter wheat (cvs. Riband, Mercia and Haven) were grown at two concentrations of CO2 [ambient (355 pmol mol?1) and elevated (708 μmol mol?1)] under two O3 regimes [clean air (< 5 nmol mol?1 O3) and polluted air (15 nmol mol?1 O3 at night rising to a midday maximum of 75 nmol mol?1)] in a phytotron at the University of Newcastle-upon-Tyne. Between the two-leaf stage and anthesis, measurements of leaf gas-exchange, non-structural carbohydrate content, visible O3 damage, growth, dry matter partitioning, yield components and root development were made in order to examine responses to elevated CO2 and/or O3. Growth at elevated CO2 resulted in a sustained increase in the rate of CO2 assimilation, but after roughly 6 weeks' exposure there was evidence of a slight decline in the photosynthetic rate (c.-15%) measured under growth conditions which was most pronounced in the winter cultivars. Enhanced rates of CO2 assimilation were accompanied by a decrease in stomatal conductance which improved the instantaneous water use efficiency of individual leaves. CO2 enrichment stimulated shoot and root growth to an equivalent extent, and increased tillering and yield components, however, non-structural carbohydrates still accumulated in source leaves. In contrast, long-term exposure to O3 resulted in a decreased CO2 assimilation rate (c. -13%), partial stomatal closure, and the accumulation of fructan and starch in leaves in the light. These effects were manifested in decreased rates of shoot and root growth, with root growth more severely affected than shoot growth. In the combined treatment growth of O3-treated plants was enhanced by elevated CO2, but there was little evidence that CO2 enrichment afforded additional protection against O3 damage. The reduction in growth induced by O3 at elevated CO2 was similar to that induced by O3 at ambient CO2 despite additive effects of the individual gases on stomatal conductance that would be expected to reduce the O3 flux by 20%, and also CO2-induced increases in the provision of substrates for detoxification and repair processes. These observations suggest that CO2 enrichment may render plants more susceptible to O3 damage at the cellular level. Possible mechanisms are discussed. 相似文献
20.