首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate whether the nitric oxide (NO) released from vascular endothelial cells would decrease vessel wall oxygen consumption by decreasing the energy expenditure of mechanical work by vascular smooth muscle. The oxygen consumption rate of arteriolar walls in rat cremaster muscle was determined in vivo during NO-dependent and -independent vasodilation on the basis of the intra- and perivascular oxygen tension (Po2) measured by phosphorescence quenching laser microscopy. NO-dependent vasodilation was induced by increased NO production due to increased blood flow, whereas NO-independent vasodilation was induced by topical administration of papaverine. The energy efficiency of vessel walls was evaluated by the variable ratio of circumferential wall stress (amount of mechanical work) to vessel wall oxygen consumption rate (energy cost) in the arteriole between normal and vasodilated conditions. NO-dependent and -independent dilation increased arteriolar diameters by 13 and 17%, respectively, relative to the values under normal condition. Vessel wall oxygen consumption decreased significantly during both NO-dependent and -independent vasodilation compared with that under normal condition. However, vessel wall oxygen consumption during NO-independent vasodilation was significantly lower than that during NO-dependent vasodilation. On the other hand, there was no significant difference between the energy efficiency of vessel walls during NO-dependent and -independent vasodilation, suggesting the decrease in vessel wall oxygen consumption produced by NO to be related to reduced mechanical work of vascular smooth muscle.  相似文献   

2.
Oxygen dissolved in the arterial blood plasma at a high pressure was shown to pass into the brain tissue from the finest arterioles. Therefore only a thin layer of the tissue immediately adjacent to these vessels is affected by the increased oxygen tension pO2. Permeability of the arteriole walls for oxygen protects the neurones against the high pO2. A special physiological feature of the oxygen transport during normobaric hyperoxia in the brain tissue involves very "steep" gradients of the pO2 in tissues and of the transferring the oxygen fraction from arterioles to venules through the tissues. The findings allow to compare distribution of the pO2 over the whole brain vessel network with that during inhalation of air or pure oxygen.  相似文献   

3.
Matching blood flow to metabolic demand in terminal vascular beds involves coordinated changes in diameters of vessels along flow pathways, requiring upstream and downstream transfer of information on local conditions. Here, the role of information transfer mechanisms in structural adaptation of microvascular networks after a small change in capillary oxygen demand was studied using a theoretical model. The model includes diameter adaptation and information transfer via vascular reactions to wall shear stress, transmural pressure, and oxygen levels. Information transfer is additionally effected by conduction along vessel walls and by convection of metabolites. The model permits selective blocking of information transfer mechanisms. Six networks, based on in vivo data, were considered. With information transfer, increases in network conductance and capillary oxygen supply were amplified by factors of 4.9 +/- 0.2 and 9.4 +/- 1.1 (means +/- SE), relative to increases when information transfer was blocked. Information transfer by flow coupling alone, in which increased shear stress triggers vascular enlargement, gave amplifications of 4.0 +/- 0.3 and 4.9 +/- 0.5. Other information transfer mechanisms acting alone gave amplifications below 1.6. Thus shear-stress-mediated flow coupling is the main mechanism for the structural adjustment of feeding and draining vessel diameters to small changes in capillary oxygen demand.  相似文献   

4.
To study the role of nitric oxide (NO) in regulating oxygen consumption by vessel walls, the oxygen consumption rate of arteriolar walls in rat cremaster muscle was measured in vivo during flow-induced vasodilation and after inhibiting NO synthesis. The oxygen consumption rate of arteriolar walls was calculated based on the intra- and perivascular PO2 values measured by phosphorescence quenching laser microscopy. The perivascular PO2 value of the arterioles during vasodilation was significantly higher than under control conditions, although the intravascular PO2 values under both conditions were approximately the same. Inhibition of NO synthesis, on the other hand, caused a significant increase in arterial blood pressure and a significant decrease in arteriolar diameter. Inhibition of NO synthesis also caused a significant decrease in both the intra- and perivascular PO2 values of the arterioles. Inhibition of NO synthesis increased the oxygen consumption rate of the vessel walls by 42%, whereas enhancement of flow-induced NO release decreased it by 34%. These results suggest that NO plays an important role not only as a regulator of peripheral vascular tone but also as a modulator of tissue oxygenation by reducing oxygen consumption by vessel walls. In addition, enhancement of NO release during exercise may facilitate efficient oxygen supply to the surrounding high metabolic tissue.  相似文献   

5.
肠系膜微血管通透速度的图象分析   总被引:5,自引:0,他引:5  
本文应用微循环活体观察和荧光示踪技术,通过计算机数字图象处理对荧光素钠(FINa)和FITC-Dextrans(FD-4,MW4000,FD-150,MW150000)在肠系膜微血管的通透过程进行了定量研究,建立了正常大鼠肠系膜微血管对不同分子量荧光物质的通透方程,得到了通透系数及对通透系数评价的定量方法。结果证实:颈动脉注射荧光素钠后4s即可在微血管中见到,扩散速度很快,通透系数为3.362×10-8cm2/s。注射FD-4后15s可在微血管中见到,扩散速度比荧光素钠慢1倍左右,通透系数为1.718×10-8cm2/s。注射FD-150后8s可在微血管中见到,扩散速度很慢,约为荧光素钠扩散速度的1/70,通透系数为0.0486×10-8cm2/s。荧光物质的渗出部位主要在毛细血管及细静脉,在细动脉则极少见到。证实我们计算得出的通透系数能够较好地反映肠系膜微血管通透的实际情况,所采用的评价方法及得到的通透方程可以用于微血管物质交换参数的定量评价。  相似文献   

6.
A substantial proportion of many different types of circulating cancer cells appear to be killed during their interactions with the pulmonary microcirculation. Different tensions exist during respiration within alveolar units, and hence the pulmonary capillaries. We have calculated the effects of these tensions on the entry and subsequent fate of circulating cancer cells. Our calculations indicate that during expiration, when tension in the capillary walls is low, cancer cells can enter and travel along the capillaries without damage, because the vessels are deformed by the cells and the hydrodynamic field surrounding them. During normal inspiration when the alveoli are stretched, the increased tension within the capillary walls serves to compress the contained cancer cells. This compression, together with previously calculated blood pressure differentials between the ends of the cells, is thought in some cases, to increase their membrane tensions above the critical level for rupture, resulting in cytolysis, in accord with experimental observations. In deep inspiration, when a very substantial increase in capillary wall tension occurs, cancer cells already within the capillaries, entering them and in transit along them are expected to develop membrane tensions greatly exceeding the critical values for rupture. It is suggested that these respiration-induced effects may act as an important rate-regulating step in the metastatic process, where the development of pulmonary metastases plays a central role. Furthermore, induced deep inspiration may conceivably be utilized in the inhibition of pulmonary metastasis.  相似文献   

7.
为了研究Dicer及其所产生的miRNAs在血管平滑肌细胞(VSMC)中的作用,本研究采用条件性基因打靶法敲除了小鼠VSMC中的Dicer外显子23,通过采用连续性剖检妊娠小鼠法、病理组织学、免疫荧光、PCR、Western blot和实时PCR等技术对条件性敲除Dicer(Dicer c KO)胚胎的血管病变和VSMC中的Dicer、miRNAs和信号转导通路蛋白变化进行了详细研究.结果发现,在培育条件性敲除Dicer小鼠的过程可产生三种不同基因型小鼠,即野生型、杂合型和纯合型(Dicer c KO)小鼠.其中野生型和杂合型小鼠出生后无明显临床异常,而Dicer c KO小鼠却死于腹中而不能出生.Dicer c KO胚胎在胚胎发育的第12.5天(E12.5)就出现发育迟滞变化,在E14.5,皮肤、骨骼肌和肝脏的血管极度扩张、血液淤滞和广泛的弥漫性出血,在E15.5死亡.Dicer c KO胚胎血管壁的病变于E13.5即出现,主要表现为血管中膜的VSMC排列不整,增生减少;E14.5血管壁变薄、塌陷,管腔不规则,细胞增生明显减少;E15.5血管壁的结构完全破坏,细胞增生停止,血管壁的屏障作用破坏,通透性增强,向外渗血.在胚胎发育的E14.5,VSMC标志性基因的表达明显下调,VSMC中大部分受检miRNAs的表达也明显降低,磷酸化的信号转导通路蛋白,即细胞外信号调节激酶和蛋白激酶明显衰减.研究证明,Dicer是血管发育所必需的基因,它可通过控制mi RNA产生和成熟来调节VSMC标志性基因的表达,借以促进VSMC的增殖与分化,保障血管壁结构的完整.  相似文献   

8.
In the initial stages of pulmonary edema, liquid accumulates in the lung interstitium and appears as cuffs around pulmonary vessels. To determine the pattern, rate, and magnitude of cuff formation, we inflated sheep lungs to capacity with liquid (inflation pressure 19 cmH2O) for 3-300 min. After freezing the lobes in liquid N2, we measured perivascular cuff size and total perivascular volume in frozen blocks of each lobe and compared the results with previous measurements in dog lungs. Total cuff volume in sheep lungs reached a maximum value of 5% of air space volume, compared with 9% in dog lungs. In sheep lungs 94% of vessels greater than or equal to 0.5 mm diam and 16% of smaller vessels were surrounded by cuffs. In dog lungs these values were 99 and 47%, respectively. The ratio of cuff area to vessel area reached a maximum of 2.3 in sheep lungs and 3.4 in dog lungs. In an electrical analogue model designed to simulate cuff growth, estimated interstitial resistance to liquid flow was 6-15 times higher than similar estimates in dog lungs. These species differences might be the result of differences in the composition of the interstitial gel or to differences in the mechanical linkage between the lung parenchyma and vessel wall.  相似文献   

9.
? The rare pit hypothesis predicts that the extensive inter-vessel pitting in large early-wood vessels of ring-porous trees should render many of these vessels extremely vulnerable to cavitation by air-seeding. This prediction was tested in Quercus gambelii. ? Cavitation was assessed from native hydraulic conductivity at field sap tension and in dehydrated branches. Single-vessel air injections gave air-seeding pressures through vessel files; these data were used to estimate air-seeding pressures for inter-vessel walls and pits. ? Extensive cavitation occurred at xylem sap tensions below 1 MPa. Refilling occurred below 0.5 MPa and was inhibited by phloem girdling. Remaining vessels cavitated over a wide range to above 4 MPa. Similarly, 40% of injected vessel files air-seeded below 1.0 MPa, whereas the remainder seeded over a wide range exceeding 5 MPa. Inter-vessel walls averaged 1.02 MPa air-seeding pressure, similar and opposite to the mean cavitation tension of 1.22 MPa. Consistent with the rare pit hypothesis, only 7% of inter-vessel pits were estimated to air-seed by 1.22 MPa. ? The results confirm the rare pit prediction that a significant fraction of large vessels in Q. gambelii experience high probability of failure by air-seeding.  相似文献   

10.
The objective of this study is to compare the effectiveness of metabolic signals derived from erythrocytes and derived from the vessel wall for regulating blood flow in heterogeneous microvascular networks. A theoretical model is used to simulate blood flow, mass transport, and vascular responses. The model accounts for myogenic, shear-dependent, and metabolic flow regulation. Metabolic signals are assumed to be propagated upstream along vessel walls via a conducted response. Arteriolar tone is assumed to depend on the conducted metabolic signal as well as local wall shear stress and wall tension, and arteriolar diameters are calculated based on vascular smooth muscle mechanics. The model shows that under certain conditions metabolic regulation based on wall-derived signals can be more effective in matching perfusion to local oxygen demand relative to regulation based on erythrocyte-derived signals, resulting in higher extraction and lower oxygen deficit. The lower effectiveness of the erythrocyte-derived signal is shown to result in part from the unequal partition of hematocrit at diverging bifurcations, such that low-flow vessels tend to receive a reduced hematocrit and thereby experience a reduced erythrocyte-derived metabolic signal. The model simulations predict that metabolic signals independent of erythrocytes may play an important role in local metabolic regulation of vascular tone and flow distribution in heterogeneous microvessel networks.  相似文献   

11.
The ultrastructure of the wall of the main blood vessels of the phoronid Phoronopsis harmeri is described. The walls of the lophophoral and left lateral vessels consist of myoepithelial cells of the coelomic lining (peritoneal cells), a thin basal lamina, and an incomplete endothelial lining. In the head region of the body, the wall of the medial vessel consists of myoepithelial cells of the coelomic lining (peritoneal cells), a basal lamina, and true muscular endothelial cells. The anterior part of the medial vessel functions as the heart. In the anterior part of the body, the medial vessel wall consists of five layers: the external nonmuscular coelothelium, a layer of the extracellular matrix, the internal muscular coelothelium, an internal layer of the extracellular matrix, and an incomplete endothelial lining. The complicated structure of the medial vessel wall may be explained by the superimposition of the lateral mesentery on the ordinary vessel wall.  相似文献   

12.
Experimental studies and observations in the human brain indicate that interstitial fluid and solutes, such as amyloid-beta (Abeta), are eliminated from grey matter of the brain along pericapillary and periarterial pathways. It is unclear, however, what constitutes the motive force for such transport within blood vessel walls, which is in the opposite direction to blood flow. In this paper the potential for global pressure differences to achieve such transport are considered. A mathematical model is constructed in order to test the hypothesis that perivascular drainage of interstitial fluid and solutes out of brain tissue is driven by pulsations of the blood vessel walls. Here it is assumed that drainage occurs through a thin layer between astrocytes and endothelial cells or between smooth muscle cells. The model suggests that, during each pulse cycle, there are periods when fluid and solutes are driven along perivascular spaces in the reverse direction to the flow of blood. It is shown that successful drainage may depend upon some attachment of solutes to the lining of the perivascular space, in order to produce a valve-like effect, although an alternative without this requirement is also postulated. Reduction in pulse amplitude, as in ageing cerebral vessels, would prolong the attachment time, encourage precipitation of Abeta peptides in vessel walls, and impair elimination of Abeta from the brain. These factors may play a role in the pathogenesis of cerebral amyloid angiopathy and in the accumulation of Abeta in the brain in Alzheimer's disease.  相似文献   

13.
Varicose veins are the most common vascular disease in humans. Veins have valves that help the blood return gradually to the heart without leaking blood. When these valves become weak, blood and fluid collect and pool by pressing against the walls of the veins, causing varicose veins. In the cardiovascular system, mechanical forces are important determinants of vascular homeostasis and pathological processes. Blood vessels are constantly exposed to a variety of hemodynamic forces, including shear stress and environmental strains caused by the blood flow. In varicose veins within the leg, venous blood pressure rises in the vein of the lower extremities due to prolonged standing, creating a peripheral tension in the vessel wall thereby causing mechanical stimulation of endothelial cells and vascular smooth muscle. Studies have shown that long-term increased exposure to vascular wall tension is associated with the overexpression of HIF-1α and HIF-2α and increased levels of MMP-2 and MMP-9, thereby reducing venous contraction and progressive venous dilatation, which is involved in the development of varicose veins. Following the expression of metalloproteinase, the expression of type 1 collagen increases, and the amount of type 3 collagen decreases. Therefore, collagen imbalance will cause the varicose veins to not stretch. Loss of structural proteins (type 3 collagen and elastin) in the vessel wall causes the loss of the biophysical properties of the varicose vein wall. This review article tries to elaborate on the effect of mechanical forces and sensors of these forces on the vascular wall in creating the mechanism of mechanosignaling, as well as the role of the onset of molecular signaling cascades in the pathology of varicose veins.  相似文献   

14.
Oxygen modulates the growth of skin fibroblasts   总被引:4,自引:0,他引:4  
Elevated oxygen tensions are inhibitory to the growth of skin fibroblasts. Skin fibroblasts grow better at oxygen tensions below 137 mm Hg regardless of seeding density. A wide range of oxygen tensions, including those in the physiological range, strongly modulate the growth of human skin fibroblasts. There were no significant differences between the responses of fetal and postnatal cell lines to changes in ambient oxygen tension. In all cases, higher oxygen tensions significantly impeded cell growth. Seeding cells at 10(4) cells/cm(2) afforded some protection from the deleterious effects of hyperoxia. Oxygen tensions exceeding the amount present in ambient room air also impeded cell growth at this higher seeding density, but the effect did not become significant until the oxygen partial pressure reached 241 mm Hg. At lower oxygen tensions, cells seeded at 10(3) cells/cm(2) grew more rapidly than did cells seeded at 10(4) cells/cm(2). These findings may have implications for the treatment of poorly healing wounds with hyperbaric oxygen.  相似文献   

15.
Fischer 344 rats with R3230 Ac mammary carcinomas implanted in dorsal flap window chambers served as a model to obtain measurements of perivascular and stromal oxygen tension in normal and tumor tissues using Whalen recessed-tip microelectrodes (3- to 6-microns tip). Perivascular measurements were made adjacent to vessels with continuous blood flow. Thus the measurements and models provided are reflective of conditions leading to chronic hypoxia. Perivascular oxygen tensions averaged 72 +/- 13 mmHg in normal tissue vessels adjacent to tumor, 26 +/- 5 mmHg in tumor periphery, and 12 +/- 3 mmHg in tumor central vessels. There was a significant trend toward lower perivascular oxygen tensions in the tumor center (Kruskal-Wallis test, P = 0.002). A similar tendency was seen with a limited number of stromal measurements. Krogh cylinder models, which incorporate these data for perivascular oxygen tension, along with morphometric data obtained from the same tumor model suggest that hypoxic regions will exist between tumor vessels in the tumor center unless O2 consumption rates are well below 0.6 ml/100 g/min. The low perivascular measurements observed near the tumor center combined with the theoretical considerations suggest, for this model at least, that tissue oxygenation may best be improved by increasing red cell velocity and input pO2 and reducing oxygen consumption. The low perivascular oxygen tensions observed near the center also suggest that conditions conducive to increased red cell rigidity exist, that drugs which can decrease red cell rigidity could improve tumor blood flow and oxygenation, and that the endothelium of those vessels may be susceptible to hypoxia-reoxygenation injury.  相似文献   

16.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

17.
Summary The conus papillaris of Ophisaurus apodus consists of blood vessels and pigment cells. The capillary walls are formed by endothelial cells, scarce pericytes and basal laminae. The cell bodies are attenuated and the plasmalemma of their luminal and abluminal surfaces forms microvilli. The perivascular space is well developed, containing nerve fibers and their terminals. Similar localization and ultrastructure of avian pecten oculi and lacertilian conus papillaris suggest homology of these structures.  相似文献   

18.
The effects of hyperthermia on the developing 2- and 3-day chick embryo were studied by vital microscopy, in vivo microangiography and electron microscopy of post-capillary venules of the pellucid area of the yolk sac. Hyperthermia of 3 degrees C and 4 degrees C produced significant microvascular changes and perivascular oedema. The microvascular defects were characterized by interruption of the endothelial lining and the presence of blood cells breaking through the vessel walls. In addition, there were numerous inter-endothelial gaps with wide subendothelial spaces. Microangiography showed leakage from the vessel walls. It is concluded that hyperthermia produces vessel wall injury and induces the formation of gaps between endothelial cells resulting in extravasation of plasma and blood cells. These gaps are similar to those produced by biochemical mediators of inflammation. It is suggested that these microvascular changes with pathological leakage may play important roles in abnormal vascular and embryonic development.  相似文献   

19.
A small membrane-covered oxygen electrode is described. This electrode is used either as a stationary electrode in stirred solutions or as a vibrating electrode in unstirred solutions. An amplifier system for registration of the electrode current and its time derivative is also described as are two specialized reaction vessels, a miniature vessel of ca. 7-μl volume and a closed vessel for sampling during respiration measurements. The kinetics of oxygen uptake from the atmosphere of respiring solutions is investigated. The uptake follows first-order kinetics and may be calculated from simple equations. The uptake may be prevented by continuously adjusting the air space oxygen tension to the oxygen tension of the solution. This is done with the controlled gas mixer which is described. It makes possible reliable respiration measurements in open reaction vessels (e.g., photometric cuvettes). The techniques described have been developed for work with mitochondria but they have wide applicability.  相似文献   

20.
Blood vessels change their caliber to adapt to the demands of tissues or organs for oxygen and nutrients. This event is mainly organized at the capillary level and requires a size-sensing mechanism. However, the molecular regulatory mechanism involved in caliber size modification in blood vessels is not clear. Here we show that apelin, a protein secreted from endothelial cells under the activation of Tie2 receptor tyrosine kinase on endothelial cells, plays a role in the regulation of caliber size of blood vessel through its cognate receptor APJ, which is expressed on endothelial cells. During early embryogenesis, APJ is expressed on endothelial cells of the new blood vessels sprouted from the dorsal aorta, but not on pre-existing endothelial cells of the dorsal aorta. Apelin-deficient mice showed narrow blood vessels in intersomitic vessels during embryogenesis. Apelin enhanced endothelial cell proliferation in the presence of vascular endothelial growth factor and promoted cell-to-cell aggregation. These results indicated that the apelin/APJ system is involved in the regulation of blood vessel diameter during angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号