首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M H Werner  D E Wemmer 《Biochemistry》1992,31(4):999-1010
The three-dimensional structure of soybean trypsin/chymotrypsin Bowman-Birk inhibitor in solution has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy and dynamical simulated annealing using the program XPLOR. The structure was defined by 907 NOEs involving intra- and interresidue contacts which served as distance constraints for a protocol of dynamical simulated annealing. In addition, 48 phi angle constraints involving non-proline amino acids, 29 chi angle constraints, six omega angle constraints for the X-Pro peptide bond, and 35 stereoassignments for prochiral centers were incorporated during the course of the calculation. The protein is characterized by two distinct binding domains for serine protease. Each domain is comprised of a beta-hairpin (antiparallel beta-sheet and a cis-proline-containing type VIb reverse turn) with a short segment making a third strand of antiparallel beta-sheet. The structure determination and refinement are described, and the structure is compared to other structures of Bowman-Birk inhibitors as well as other families of serine protease inhibitors.  相似文献   

2.
Different protease inhibitors including Bowman-Birk type (BBI) have been reported from the seeds of Vigna unguiculata. Protease isoinhibitors of double-headed Bowman-Birk type from the seeds of Vigna unguiculata have been purified and characterized. The BBI from Vigna unguiculata (Vu-BBI) has been found to undergo self-association to form very stable dimers and more complex oligomers, by size-exclusion chromatography and SDS-PAGE in the presence of urea. Many BBIs have been reported to undergo self-association to form homodimers or more complex oligomers in solution. Only one dimeric crystal structure of a BBI (pea-BBI) is reported to date. We report the three-dimensional structure of a Vu-BBI determined at 2.5 A resolution. Although, the inhibitor has a monomer fold similar to that found in other known structures of Bowman-Birk protease inhibitors, its quaternary structure is different from that commonly observed in this family. The structural elements responsible for the stability of monomer molecule and dimeric association are discussed. The Vu-BBI may use dimeric or higher quaternary association to maintain the physiological state and to execute its biological function.  相似文献   

3.
Bromelain isoinhibitors from pineapple stem (BIs) are unique double-chain inhibitors and inhibit the cysteine proteinase bromelain competitively. The three-dimensional structure was shown to be composed of two distinct domains, each of which is formed by a three-stranded anti-parallel beta-sheet. Unexpectedly, BIs were found to share similar folding and disulfide-bond connectivities not with the cystatin superfamily, but with Bowman-Birk trypsin/chymotrypsin inhibitor (BBI). The structural similarity between them suggests that BIs and BBI have evolved from a common ancestor and differentiated in function during the course of molecular evolution.  相似文献   

4.
The P1' Ser(50) at the second reactive site of soybean protease inhibitor C-II was replaced with arginine to confirm the contribution of this residue to the inhibition. The Arg derivative had less trypsin inhibitory activity (Ki = 1 X 10(-7) M) than the Ser derivative (Ki = 2 X 10(-8) M), in contrast to the results obtained from studies on peanut protease inhibitor B-III reported in the previous paper (J. Biochem. 101, 723-728 (1987)). These results suggest that each Bowman-Birk type inhibitor has an amino acid at the P1' position inherently best suited to maintaining its inhibitory activity, and that serine is not unique for the P1' amino acid in Bowman-Birk type inhibitors.  相似文献   

5.
We have found that degranulation from mast cells is specifically inhibited by the inhibitors of chymase (10). Among the natural serine protease inhibitors tested, Bowman-Birk soybean protease inhibitor, Eglin C, and human alpha 1-antichymotrypsin inhibited chymase more strongly than did chymostatin, Kunitz soybean protease inhibitor, and phosphatidylserine. Of the inhibitors tested, Bowman-Birk soybean protease inhibitor was the strongest inhibitor of chymase, its Ki value being 13.2 X 10(-9) M. Kinetic studies showed that these inhibitors were all noncompetitive inhibitors of chymase. Bowman-Birk and Kunitz soybean protease inhibitors inhibited both chymotrypsin-type and trypsin-type serine proteases but Eglin C specifically inhibited chymotrypsin-type proteases.  相似文献   

6.
A number of trypsin inhibitors were isolated from wheat germs by affinity chromatography on immobilized trypsin, gel-filtration, and ion-exchange and reverse-phase chromatography. These inhibitors were classified into two groups, inhibitors I (Mr = 14,500) and II (Mr = 7,000), based on their molecular sizes. Inhibitors I and II inhibited bovine trypsin stoichiometorically at an enzyme to inhibitor ratio of 2 and 1, respectively. Sequence analysis of these inhibitors indicated a high degree of homology and that inhibitors I had a duplicated structure of inhibitors II. They are highly homologous to double-headed proteinase inhibitors (Bowman-Birk inhibitors) of Leguminosae plants. Inhibitors II are the first example of single-headed inhibitor corresponding to one inhibitory domain of the Bowman-Birk type double-headed inhibitors, which suggests that inhibitors II are relic of an ancestral single-headed inhibitor before the gene-duplication that led to the formation of present-day Bowman-Birk type inhibitors.  相似文献   

7.
Molecular evolution of the seed storage proteins of barley, rye and wheat   总被引:15,自引:0,他引:15  
The major storage proteins (prolamins) of barley, rye and wheat are characterized by the presence of two or more unrelated structural domains, one of which contains repeated sequences. Because of this repetitive structure and their restricted distribution (only in grasses), it has been suggested that the prolamins are of recent origin. Contrary to this hypothesis, we show that parts of the non-repetitive domain of one group of prolamins are homologous with sequences present in a large group of seed proteins from monocotyledonous and dicotyledonous plants; including Bowman-Birk protease inhibitors, cereal inhibitors of alpha-amylase and trypsin, and 2 S globulin storage proteins of castor bean and oil seed rape. This implies an ancient origin for these non-repetitive domains. The origins of the repetitive domains are not known but may lie within the grasses.  相似文献   

8.
Bowman-Birk serine protease inhibitors are a family of small plant proteins, whose physiological role has not been ascertained as yet, while chemopreventive anticarcinogenic properties have repeatedly been claimed. In this work we present data on the isolation of a lentil (Lens culinaris, L., var. Macrosperma) seed trypsin inhibitor (LCTI) and its functional and structural characterization. LCTI is a 7448 Da double-headed trypsin/chymotrypsin inhibitor with dissociation constants equal to 0.54 nM and 7.25 nM for the two proteases, respectively. The inhibitor is, however, hydrolysed by trypsin in a few minutes timescale, leading to a dramatic loss of its affinity for the enzyme. This is due to a substantial difference in the kon and k*on values (1.1 microM-1.s-1 vs. 0.002 microM-1.s-1), respectively, for the intact and modified inhibitor. A similar behaviour was not observed with chymotrypsin. The twenty best NMR structures concurrently showed a canonical Bowman-Birk inhibitor (BBI) conformation with two antipodal beta-hairpins containing the inhibitory domains. The tertiary structure is stabilized by ion pairs and hydrogen bonds involving the side chain and backbone of Asp10-Asp26-Arg28 and Asp36-Asp52 residues. At physiological pH, the final structure results in an asymmetric distribution of opposite charges with a negative electrostatic potential, centred on the C-terminus, and a highly positive potential, surrounding the antitryptic domain. The segment 53-55 lacks the anchoring capacity found in analogous BBIs, thus rendering the protein susceptible to hydrolysis. The inhibitory properties of LCTI, related to the simultaneous presence of two key amino acids (Gln18 and His54), render the molecule unusual within the natural Bowman-Birk inhibitor family.  相似文献   

9.
The complete amino acid sequence of rice bran trypsin inhibitor   总被引:4,自引:0,他引:4  
The complete amino acid sequence of a double-headed trypsin inhibitor (RBTI) from rice bran was determined by a combination of limited proteolysis of the native inhibitor with Streptomyces griseus trypsin at pH 3 and conventional methods. RBTI consists of 133 amino acid residues including 18 half-cystine residues which are involved in 9 disulfide bridges in the molecule. The limited proteolysis at pH 3 produced a major split of Lys(83)-Met(84) and a minor split of Arg(107)-Val(108) together with a non-enzymatic hydrolysis of Asp(19)-Pro(20) in the molecule. The established sequence showed that RBTI is composed of 4 domains, domains I and III, and domains II and IV being homologous to the first and the second domains of soybean Bowman-Birk inhibitor, respectively, indicating that RBTI has a duplicated structure of the Bowman-Birk type inhibitor.  相似文献   

10.
An important goal in the de novo design of enzymes is the control of molecular geometry. To this end, an analog of the protease from human immunodeficiency virus 1 (HIV-1 protease) was prepared by total chemical synthesis, containing a constrained, nonpeptidic type II' beta-turn mimic of predetermined three-dimensional structure. The mimic beta-turn replaced residues Gly16,17 in each subunit of the homodimeric molecule. These residues constitute the central amino acids of two symmetry-related type I' beta-turns in the native, unliganded enzyme. The beta-turn mimic-containing enzyme analog was fully active, possessed the same substrate specificity as the Gly16,17-containing enzyme, and showed enhanced resistance to thermal inactivation. These results indicate that the precise geometry of the beta-turn at residues 15-18 in each subunit is not critical for activity, and that replacement of the native sequence with a rigid beta-turn mimic can lead to enhanced protein stability. Finally, the successful incorporation of a fixed element of secondary structure illustrates the potential of a "molecular kit set" approach to protein design and synthesis.  相似文献   

11.
The Bowman-Birk trypsin inhibitor from barley seeds (BBBI) consists of 125 amino acid residues with two inhibitory loops. Its crystal structure in the free state has been determined by the multiwavelength anomalous diffraction (MAD) method and has been refined to a crystallographic R-value of 19.1 % for 8.0-1.9 A data. This is the first report on the structure of a 16 kDa double-headed Bowman-Birk inhibitor (BBI) from monocotyledonous plants and provides the highest resolution picture of a BBI to date. The BBBI structure consists of 11 beta-strands and the loops connecting these beta-strands but it lacks alpha-helices. BBBI folds into two compact domains of similar tertiary structure. Each domain shares the same overall fold with 8 kDa dicotyledonous BBIs. The five disulfide bridges in each domain are a subset of the seven disulfide bridges in 8 kDa dicotyledonous BBIs. Two buried water molecules form hydrogen bonds to backbone atoms in the core of each domain. One interesting feature of this two-domain inhibitor structure is that the two P1 residues (Arg17 and Arg76) are approximately 40 A apart, allowing the two reactive-site loops to bind to and to inhibit two trypsin molecules simultaneously and independently. The conformations of the reactive-site loops of BBBI are highly similar to those of other substrate-like inhibitors. This structure provides the framework for modeling of the 1:2 complex between BBBI and trypsin.  相似文献   

12.
Flaviviral NS3 is a multifunctional protein displaying N-terminal protease activity in addition to C-terminal helicase, nucleoside 5'-triphosphatase (NTPase), and 5'-terminal RNA triphosphatase (RTPase) activities. NS3 is held to support the separation of RNA daughter and template strands during viral replication. In addition, NS3 assists the initiation of replication by unwinding the RNA secondary structure in the 3' non-translated region (NTR). We report here the three-dimensional structure (at 3.1 A resolution) of the NS3 helicase domain (residues 186-619; NS3:186-619) from Kunjin virus, an Australian variant of the West Nile virus. As for homologous helicases, NS3:186-619 is composed of three domains, two of which are structurally related and held to host the NTPase and RTPase active sites. The third domain (C-terminal) is involved in RNA binding/recognition. The NS3:186-619 construct occurs as a dimer in solution and in the crystals. We show that NS3:186-619 displays both ATPase and RTPase activities, that it can unwind a double-stranded RNA substrate, being however inactive on a double-stranded DNA substrate. Analysis of different constructs shows that full length NS3 displays increased helicase activity, suggesting that the protease domain plays an assisting role in the RNA unwinding process. The structural interaction between the helicase and protease domain has been assessed using small angle X-ray scattering on full length NS3, disclosing that the protease and helicase domains build a rather elongated molecular assembly differing from that observed in the NS3 protein from hepatitis C virus.  相似文献   

13.
Electron microscope images of frozen-hydrated crystals of a proteolytically modified fibrinogen show excellent preservation of the structure. An electron density map of the key centric projection of the crystal at 18 A resolution has been obtained by combining the phases derived from cryo-electron microscopy with X-ray amplitudes. Simulation methods developed in earlier studies have been used to interpret the map. In contrast to the earlier images, the map allows us to visualize the coiled-coil region of the molecule and possible substructure in the beta domains. The map also shows that there is a marked difference in density in the two regions corresponding to the molecular ends where the gamma domains interact. A possible interpretation of this finding is provided by assuming substructure in the gamma domains and the breaking of molecular symmetry where these domains interact. Some additional constraints useful for the determination of the three-dimensional structure were obtained from cryo-electron micrographs of a perpendicular view at 25 A resolution. Implications of this working model for the molecular length and contacts in the filaments in both the crystal and fibrin are described. The data used here will be valuable as a starting point for obtaining the three-dimensional structure.  相似文献   

14.
The three-dimensional structure of antistasin, a potent inhibitor of blood coagulation factor Xa, from the Mexican leech Haementeria officinalis was determined at 1.9 A resolution by X-ray crystallography. The structure reveals a novel protein fold composed of two homologous domains, each resembling the structure of hirustasin, a related 55-residue protease inhibitor. However, hirustasin has a different overall shape than the individual antistasin domains, it contains four rather than two beta-strands, and does not inhibit factor Xa. The two antistasin domains can be subdivided into two similarly sized subdomains with different relative orientations. Consequently, the domain shapes are different, the N-terminal domain being wedge-shaped and the C-terminal domain flat. Docking studies suggest that differences in domain shape enable the N-terminal, but not C-terminal, domain of antistasin to bind and inhibit factor Xa, even though both have a very similar reactive site. Furthermore, a putative exosite binding region could be defined in the N-terminal domain of antistasin, comprising residues 15-17, which is likely to interact with a cluster of positively charged residues on the factor Xa surface (Arg222/Lys223/Lys224). This exosite binding region explains the specificity and inhibitory potency of antistasin towards factor Xa. In the C-terminal domain of antistasin, these exosite interactions are prevented due to the different overall shape of this domain.  相似文献   

15.
D Suck  C Oefner  W Kabsch 《The EMBO journal》1984,3(10):2423-2430
The three-dimensional structure of bovine pancreatic deoxyribonuclease I (DNase I) has been determined at 2.5 A resolution by X-ray diffraction from single crystals. An atomic model was fitted into the electron density using a graphics display system. DNase I is an alpha, beta-protein with two 6-stranded beta-pleated sheets packed against each other forming the core of a 'sandwich'-type structure. The two predominantly anti-parallel beta-sheets are flanked by three longer alpha-helices and extensive loop regions. The carbohydrate side chain attached to Asn 18 is protruding by approximately 15 A from the otherwise compact molecule of approximate dimensions 45 A X 40 A. The binding site of CA2+-deoxythymidine-3',5'-biphosphate (Ca-pdTp) has been determined by difference Fourier techniques confirming biochemical results that the active centre is close to His 131. Ca-pdTp binds at the surface of the enzyme between the two beta-pleated sheets and seems to interact with several charged amino acid side chains. Active site geometry and folding pattern of DNase I are quite different from staphylococcal nuclease, the only other Ca2+-dependent deoxyribonuclease whose structure is known at high resolution. The electron density map indicates that two Ca2+ ions are bound to the enzyme under crystallization conditions.  相似文献   

16.
Analysis of the amino acid sequences of plant Bowman-Birk inhibitors   总被引:7,自引:0,他引:7  
Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots. S. Selvaraj is on leave from Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, Tamilnadu, India Correspondence to: M.R.N. Murthy  相似文献   

17.
The three-dimensional structure of alpha-actinin from rabbit skeletal muscle was determined by cryoelectron microscopy in combination with homology modeling of the separate domain structures based on results previously determined by X-ray crystallography and nuclear magnetic resonance spectroscopy. alpha-Actinin was induced to form two-dimensional arrays on a positively charged lipid monolayer and micrographs were collected from unstained, frozen hydrated specimens at tilt angles from 0 degrees to 60 degrees. Interpretation of the 15 A-resolution three-dimensional structure was done by manually docking homologous models of the three key domains, actin-binding, three-helix motif and the C-terminal calmodulin-like domains. The initial model was refined quantitatively to improve its fit to the experimental reconstruction. The molecular model of alpha-actinin provides the first view of the overall structure of a complete actin cross-linking protein. The structure is characterized by close proximity of the C-terminal, calmodulin-like domain to the linker between the two calponin-homology domains that comprise the actin-binding domain. This location suggests a hypothesis to explain the involvement of the C-terminal domain in Ca(2+)-dependent actin binding of non-muscle isoforms.  相似文献   

18.
The structure and function of Bowman-Birk inhibitors (BBIs) from dicotyledonous plants such as soybean have been studied extensively. In contrast, relatively little is known about the BBIs from monocotyledonous plants such as barley, which differ from dicot BBIs in size and tertiary structure. The BBI from barley seeds (BBBI) consists of 125 amino acid residues with two separate inhibitory loops. Previously we determined the high-resolution structure of a 16 kDa BBBI in the free state. The BBBI folds into two compact domains (N and C domain) with tertiary structures that are similar to that of the 8 kDa BBI from dicots. Here we report the structure of a 1:2 complex between BBBI and porcine pancreatic trypsin (PPT) at 2.2 A resolution. This structure confirms that several regions, including the inhibitory loops in the free BBBI structure, show exceptionally low temperature factors and a distorted conformation due to crystalline packing in the lattice. Extensive analysis of the interaction between BBBI and trypsin, and comparison with other known canonical inhibitor-protease complexes, reveals that the mode of interaction between BBBI and PPT is similar to that of known serine protease inhibitors, as expected; however, several unique features are also identified in the primary binding sites near the inhibitory loops as well as in additional binding sites. The carboxy-terminal tail of the inhibitor extends into the interface between the two trypsin molecules and interacts with both of them simultaneously. The longest distance between the two P1 residues (Arg17 and Arg76) in the complex structure is approximately 34 A, which is shorter than in the free inhibitor, but it is still possible for BBBI to bind and inhibit two trypsin molecules simultaneously and independently.  相似文献   

19.
The three-dimensional structure of the Bowman-Birk type proteinase inhibitor (PI-II) has been determined by x-ray crystallography and refined at 2.5-A resolution. This protein is a specific inhibitor of trypsin. Two reactive site loops, one at each end of the PI-II molecule, are structurally similar to each other and to reactive-site loops of pancreatic secretory trypsin inhibitor (Bolognesi, M., Gatti, G., Menegatti, E., Guarneri, M., Marquart, M., Papamokos, E., and Huber, R. (1982) J. Mol. Biol. 162, 839-869) and bovine pancreatic trypsin inhibitor (Deisenhofer, J., and Steigemann, W. (1975) Acta Crystallogr. B31, 238-250). PI-II is the first reported Bowman-Birk type inhibitor structure to be refined at high resolution, providing further insight into inhibitor mechanisms.  相似文献   

20.
Five protease inhibitors, I--V, in the molecular weight range 7000--8000 were purified from Tracy soybeans by ammonium sulfate precipitation, gel filtration on Sephadex G-100 and G-75, and column chromatography on DEAE-cellulose. In common with previously described trypsin inhibitors from legumes, I--V have a high content of half-cystine and lack tryptophan. By contrast with other legume inhibitors, inhibitor II contains 3 methionine residues. Isoelectric points range from 6.2 to 4.2 in order from inhibitor I to V. Molar ratios (inhibitor/enzyme) for 50% trypsin inhibition are I = 4.76, II = 1.32, III = 3.22, IV = 2.17, V = 0.97. Only V inhibit chymotrypsin significantly (molar ratio = 1.33 for 50% inhibition). The sequence of the first 16 N-terminal amino acid residued of inhibitor V is identical to that of the Bowman-Birk inhibitor; all other observations also indicate that inhibitor V and Bowman-Birk are identical. The first 20 N-terminal amino acid residues of inhibitor II show high homology to those of Bowman-Birk inhibitor, differing by 1 deletion and 5 substitutions. Immunological tests show that inhibitors I through IV are fully cross-reactive with each other but are distinct from inhibitor V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号