首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Striatal‐enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal‐regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho‐ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho‐ERK by STEP is not known. Therefore, we examined STEP activity toward para‐nitrophenyl phosphate, phospho‐tyrosine‐containing peptides, and the full‐length phospho‐ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N‐terminal regulatory region and key residues in its active site. Specifically, both kinase interaction motif (KIM) and kinase‐specific sequence of STEP were required for ERK interaction. In addition to the N‐terminal kinase‐specific sequence region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho‐ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho‐ERK peptide sequence through its active site, and the contact of STEP F311 with phospho‐ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP‐ERK recognition, which could serve as a potential therapy for neurological disorders.

  相似文献   


2.
Mitogen-activated protein (MAP) kinases control gene expression in response to extracellular stimuli and exhibit exquisite specificity for their cognate regulators and substrates. We performed a structure-based mutational analysis of ERK2 to identify surface areas that are important for recognition of its interacting proteins. We show that binding and activation of MKP3 by ERK2 involve two distinct protein-protein interaction sites in ERK2. Thus, the common docking (CD) site composed of Glu-79, Tyr-126, Arg-133, Asp-160, Tyr-314, Asp-316, and Asp-319 are important for high affinity MKP3 binding but not essential for ERK2-induced MKP3 activation. MKP3 activation requires residues Tyr-111, Thr-116, Leu-119, Lys-149, Arg-189, Trp-190, Glu-218, Arg-223, Lys-229, and His-230 in the ERK2 substrate-binding region, located distal to the common docking site. Interestingly, many of the residues important for MKP3 recognition are also used for Elk1 binding and phosphorylation. In addition to the shared residues, there are also residues that are unique to each target recognition. There is evidence indicating that the CD site and the substrate-binding region defined here are also utilized for MEK1 recognition, and indeed, we demonstrate that the binding of MKP3, Elk1, and MEK1 to ERK2 is mutually exclusive. Taken together, our data suggest that the efficiency and fidelity of ERK2 signaling is achieved by a bipartite recognition process. In this model, one part of the ERK2-binding proteins (e.g. the kinase interaction motif sequence) docks to the CD site located on the back side of the ERK2 catalytic pocket for high affinity association, whereas the interaction of the substrate-binding region with another structural element (e.g. the FXFP motif in MKP3 and Elk1) may not only stabilize binding but also provide contacts crucial for modulating the activity and/or specificity of ERK2 target molecules.  相似文献   

3.
The observation that mitogen-activated protein (MAP) kinases ERK1 and ERK2 are constitutively activated in a number of oncogene-transformed cell lines has led to the hypothesis that prolonged activation of these enzymes is required for the transformation process. To investigate this question, we have examined the regulation of the ERK pathway in Rat1 fibroblasts transformed with activated c-Raf-1 (Raf22W), v-Ha-Ras, and v-Src. Expression of these oncoproteins had no effect on the enzymatic activity of ERK1 and ERK2 in either serum-starved or exponentially growing cells. Moreover, the stimulatory effect of serum on ERK1/ERK2 activity was substantially reduced or abrogated in these cells; this impairment was associated with a strong attenuation of c-fos gene induction. In contrast, expression of Raf22w, v-Ha-Ras, or v-Src resulted in the constitutive activation of the upstream kinases MEK1 and MEK2. Treatment of the cells with vanadate completely restored the activation of ERK1/ERK2 in oncogene-transformed cells, suggesting the involvement of a vanadate-sensitive tyrosine phosphatase. Northern blot analysis of VH1-like dual-specificity MAP kinase phosphatases did not reveal any significant difference in the mRNA expression pattern of these genes between parental and transformed Rat1 cells. Phosphoamino acid analysis indicated that ERK1 is phosphorylated on threonine, but not on tyrosine, in oncogene-transformed cells and that vanadate treatment restores tyrosine phosphorylation. We conclude from these results that ERK1/ERK2 activity is repressed by a single-specificity tyrosine phosphatase in oncogene-transformed rat fibroblasts. J. Cell. Physiol. 174:35–47, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Mitogen-activated protein kinase phosphatase 3 (MKP3) is a specific regulator of extracellular signal-regulated protein kinase 2 (ERK2). Association of ERK2 with MKP3 results in a powerful increase in MKP3 phosphatase activity. To determine the molecular basis of the specific ERK2 recognition by MKP3 and the ERK2-induced MKP3 activation, we have carried out a systematic mutational and deletion analysis of MKP3. Using activation-based and competition-based assays, we are able to quantitatively evaluate the contributions that residues/regions within MKP3 make to ERK2 binding and ERK2-induced MKP3 activation. Our results show that recognition and activation of MKP3 by ERK2 involves multiple regions of MKP3. Thus, the kinase interaction motif (KIM; residues 61--75) in MKP3 plays a major role (135-fold) for high affinity ERK2 binding. The most important residue in the KIM sequence of MKP3 is Arg(65), which probably interacts with Asp(319) in ERK2. In addition to KIM, a unique sequence conserved in cytosolic MKPs (residues 161--177 in MKP3) also contributes to ERK2 binding (15-fold). However, these two regions are not essential for ERK2-induced MKP3 activation. A third ERK2 binding site is localized in the C terminus of MKP3 (residues 348--381). Although deletion of this region or mutation of the putative ERK specific docking sequence (364)FTAP(367) in this region reduces MKP3's affinity for ERK2 by less than 10-fold, this region is absolutely required for ERK2-induced MKP3 activation.  相似文献   

5.
Endothelial cells approaching confluence exhibit marked decreases in tyrosine phosphorylation of receptor tyrosine kinases and adherens junctions proteins, required for cell cycle arrest and adherens junctions stability. Recently, we demonstrated a close correlation in endothelial cells between membrane cholesterol and tyrosine phosphorylation of adherens junctions proteins. Here, we probe the mechanistic basis for this correlation. We find that as endothelial cells reach confluence, the tyrosine phosphatase SHP-2 is recruited to a low-density membrane fraction in a cholesterol-dependent manner. Binding of SHP-2 to this fraction was not abolished by phenyl phosphate, strongly suggesting that this binding was mediated by other regions of SHP-2 beside its SH2 domains. Annexin II, previously implicated in cholesterol trafficking, was associated in a complex with SHP-2, and both proteins localized to adhesion bands in confluent endothelial monolayers. These studies reveal a novel, cholesterol-dependent mechanism for the recruitment of signaling proteins to specific plasma membrane domains via their interactions with annexin II.  相似文献   

6.
The synthesis and biological activity of a series of 2-[(4-methylthiopyridin-2-yl)methylsulfinyl]benzimidazoles are described. These compounds have potent inhibitory effects against the protein tyrosine phosphatase activity of CD45. Enzymatic analysis with several phosphatases revealed that compound 5a had high specificity for CD45 compared with serine/threonine phosphatases (PP1, PP2A), tyrosine phosphatases (LAR, PTP1B and PTP-S2) and dual phosphatase (VHR).  相似文献   

7.
Here, we present data suggesting a novel mechanism for regulation of natural killer (NK) cell cytotoxicity through inhibitory receptors. Interaction of activation receptors with their ligands on target cells induces cytotoxicity by NK cells. This activation is under negative control by inhibitory receptors that recruit tyrosine phosphatase SHP-1 upon binding major histocompatibility class I on target cells. How SHP-1 blocks the activation pathway is not known. To identify SHP-1 substrates, an HLA-C-specific inhibitory receptor fused to a substrate-trapping mutant of SHP-1 was expressed in NK cells. Phosphorylated Vav1, a regulator of actin cytoskeleton, was the only protein detectably associated with the catalytic site of SHP-1 during NK cell contact with target cells expressing HLA-C. Vav1 trapping was independent of actin polymerization, suggesting that inhibition of cellular cytotoxicity occurs through an early dephosphorylation of Vav1 by SHP-1, which blocks actin-dependent activation signals. Such a mechanism explains how inhibitory receptors can block activating signals induced by different receptors.  相似文献   

8.
Taing M  Keng YF  Shen K  Wu L  Lawrence DS  Zhang ZY 《Biochemistry》1999,38(12):3793-3803
Several protein tyrosine phosphatases (PTPases) have been implicated as regulatory agents in the insulin-stimulated signal transduction pathway, including PTP1B, PTPalpha, and LAR. Furthermore, since all three enzymes are suggested to serve as negative regulators of insulin signaling, one or more may play a pivotal role in the pathogenesis of insulin resistance. We report herein the acquisition of highly selective PTP1B-targeted inhibitors. We recently demonstrated that PTP1B contains two proximal aromatic phosphate binding sites [Puius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo S. C., and Zhang, Z. Y. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 13420-5], and we have now employed this structural feature to design and synthesize an array of bis(aryldifluorophosphonates). Not only do the lead compounds serve as potent inhibitors of PTP1B but, in addition, several exhibit selectivities for PTP1B versus PTPalpha, LAR, and VHR that are greater than 2 orders in magnitude.  相似文献   

9.
Previous work has shown that inhibition of Jak2 via the pharmacological compound AG490 blocks the angiotensin II (Ang II)-dependent activation of ERK2, thereby suggesting an essential role of Jak2 in ERK activation. However, recent studies have thrown into question the specificity of AG490 and therefore the role of Jak2 in ERK activation. To address this, we reconstituted an Ang II signaling system in a Jak2-/-cell line and measured the ability of Ang II to activate ERK2 in these cells. Controls for this study were the same cells expressing Jak2 via the addition of a Jak2 expression plasmid. In the cells expressing Jak2, Ang II induced a marked increase in ERK2 activity as measured by Western blot analysis and in vitro kinase assays. ERK2 activity returned to basal levels within 30 min. However, in the cells lacking Jak2, Ang II treatment resulted in ERK2 activation that did not return to basal levels until 120 min after ligand addition. Analysis of phosphatase gene expression revealed that Ang II induced mitogen-activated protein kinase phosphatase 1 (MKP-1) expression in cells expressing Jak2 but failed to induce MKP-1 expression in cells lacking Jak2. Therefore, our results suggest that Jak2 is not required for Ang II-induced ERK2 activation. Rather Jak2 is required for Ang II-induced ERK2 inactivation via induction of MKP-1 gene expression.  相似文献   

10.
Vanadium salts such as vanadyl sulfate (VS), potent inhibitors of protein tyrosine phosphatases, have been shown to mimic, augment, and prolong insulin's action. However, the molecular mechanism of responses to these salts is not clear. In the present studies, we examined if VS-induced effects on insulin action are associated with enhancement or augmentation in the activation state of key components of the insulin signaling pathway. Treatment of insulin receptor-overexpressing cells with insulin or VS resulted in a time-dependent transient increase in phosphorylation and activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) that peaked at about 5 min, then declined rapidly to about baseline within 30 min. However, when the cells were treated with VS before stimulation with insulin, sustained ERK 1/2 phosphorylation and activation were observed well beyond 60 min. VS treatment also prolonged the insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3-K), which was associated with sustained interaction between insulin receptor substrate-1 (IRS-1) and the p(85 alpha) subunit of phosphatidylinositol 3-kinase (PI3-K) in response to insulin. These data indicate that prolongation of insulin-stimulated ERK 1/2 and PI3-K activation by VS is due to a more stable complex formation of IRS-1 with the p(85 alpha) subunit which may, in turn, be responsible for its ability to enhance and extend the biological effects of insulin.  相似文献   

11.
G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates G protein-coupled receptor signaling via agonist-induced receptor phosphorylation and desensitization. GRK2 can also modulate cellular activation by interacting with downstream signaling molecules. The intracellular GRK2 level changes during inflammatory conditions. We investigated how IL-1β-induced changes in endogenous GRK2 expression influence chemokine receptor signaling in primary astrocytes. Culturing astrocytes with IL-1β for 24 h induced a 2–3-fold increase in GRK2 and decreased C–C chemokine ligand 2 (CCL2)-induced ERK1/2 activation. Conversely, the 45% decrease in GRK2 expression in astrocytes from GRK2+/− animals resulted in a more pronounced CCL2-induced ERK1/2 phosphorylation. Increased GRK2 inhibited CCL2-induced Akt phosphorylation at Thr308 and Ser473 as well as pPDK-1 translocation. In contrast, altered GRK2 levels did not change the CCL2-induced increase in intracellular calcium or MEK1/2 phosphorylation. These data suggest that altered GRK2 expression modulates chemokine signaling downstream of the receptor. We found that GRK2 kinase activity was not required to decrease chemokine-induced ERK1/2 phosphorylation, whereas regulation of CCL2-induced Akt phosphorylation did require an active GRK2 kinase domain. Collectively, these data suggest that changes in endogenous GRK2 expression in primary astrocytes regulate chemokine receptor signaling to ERK1/2 and to PDK-1-Akt downstream of receptor coupling via kinase-dependent and kinase-independent mechanisms, respectively.  相似文献   

12.
We reported recently that sphingosine-1-phosphate (S1P) is a novel regulator of aldosterone secretion in zona glomerulosa cells of adrenal glands and that phospholipase D (PLD) is implicated in this process. We now show that S1P causes the phosphorylation of protein kinase B (PKB) and extracellularly regulated kinases 1/2 (ERK 1/2), which is an indication of their activation, in these cells. These effects are probably mediated through the interaction of S1P with the Gi protein-coupled receptors S1P1/3, as pretreatment with pertussis toxin or with the S1P1/3 antagonist VPC 23019 completely abolished the phosphorylation of these kinases. Inhibitors of phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) blocked S1P-stimulated aldosterone secretion. This inhibition was only partial when the cells were incubated independently with inhibitors of each pathway. However, aldosterone output was completely blocked when the cells were pretreated with LY 294002 and PD 98059 simultaneously. These inhibitors also blocked PLD activation, which indicates that this enzyme is downstream of PI3K and MEK in this system. We propose a working model for S1P in which stimulation of the PI3K/PKB and MEK/ERK pathways leads to the stimulation of PLD and aldosterone secretion.  相似文献   

13.
Apigenin, a dietary bioflavonoid with anticarcinogenic properties, was highly cytotoxic for HeLa cells (incubated with 0.5% FBS). This effect was accompanied with a marked increase in ERK1/2 but not MEK1/2 phosphorylation. The cytotoxic effects of apigenin were attenuated by the stimulation of these cells with 10% FBS, which provoked an increase in the phosphorylation levels of MEK1/2 and ERK1/2. The steps in the ERK1/2 pathway relevant to the cytotoxic effects of apigenin, as well as the contribution of other signaling pathways, were investigated. The activation of the pathway by transfection with the constitutively active Ras mutant (RasV12) conferred protection to serum-starved HeLa cells against apigenin, whereas the constitutively active MEK(E) mutant did not. MEK inhibitors (PD098059 or U0126) blocked ERK1/2 phosphorylation induced by apigenin and conferred partial protection against this flavonoid. The effects of apigenin did not involve p38-MAPK or JNK1/2, and were not simply due to inhibition of PI3kinase or protein kinase CK2. These data suggest that the deregulation of the ERK1/2 pathway, due to the potentiation of ERK1/2 phosphorylation without increasing MEK1/2 phosphorylation, is involved in apigenin-induced HeLa cell death.  相似文献   

14.
Formation of protein-protein assemblies is essential in maintaining cell structure and function. Conservation of structural motifs and binding sites is the result of evolutionary pressure for solutions compatible with both molecular economy and regulation. PDZ domains are a typical example: A conserved fold governs specificity toward recognition of C-terminal protein sequences by small sequential and/or structural deviations within a canonical binding mode. The energetic principles underlying the strength and specificity of PDZ-protein interactions are practically unknown. We use the second PDZ domain (PDZ2) of the human protein tyrosine phosphatase (hPTP1E) as a model to study the energetics of peptide binding to a class I PDZ domain. Calorimetric experiments reveal the enthalpy, entropy, and heat capacity changes accompanying PDZ2 binding to the C-terminal pentadecapeptide derived from the guanine nucleotide exchange factor RA-GEF2. Association is driven by favorable enthalpy and entropy changes below 18 degrees C. Above that temperature the entropy change opposes complex formation. Structure-based predictions poorly reproduce the observed thermodynamic profile of the PDZ-peptide complex. On the basis of MD simulations and experimental findings by others we suggest that changes in the dynamics of the PDZ domain upon peptide binding make a large contribution to the observed thermodynamic parameters. Possible impacts of subtle, ligand-induced structural "stiffening" of PDZ domains are discussed. In our hands, the C-terminal segment of the tumor suppressor APC binds much less tightly to PDZ2 than what has been proposed earlier from surface plasmon resonance experiments.  相似文献   

15.
A synthetic 17-amino acid peptide (CKS-17) homologous to a highly conserved region of human and animal retroviral transmembrane proteins has been found to exhibit suppressive properties for numerous immune functions. It has been shown that CKS-17 causes an imbalance of human types 1 and 2 cytokines and inhibition of the immune responses of lymphocytes, monocytes, and macrophages. CKS-17 induced increased intracellular levels of cAMP, which plays an important role in regulation of cytokine biosynthesis. In this study, using a Jurkat T-cell line and Western blot analysis, CKS-17 induced phosphorylation of PLC-gamma1, Raf-1, MEK and ERK1/2. Using a PLC selective inhibitor U73122 or PLC-gamma1-deficient Jurkat cell line, phosphorylation induced by CKS-17 of ERK1/2, PLC-gamma1, or Raf-1, respectively, were undetectable or significantly reduced. Reintroduction of PLC-gamma1 into the PLC-gamma1-deficient Jurkat cells restored the phosphorylation of ERK1/2 and PLC-gamma1 induced by CKS-17. Further, pretreatment of Jurkat cells with PKC inhibitors blocks the phosphorylation of Raf-1, MEK, and ERK1/2 induced by CKS-17. These results indicate that CKS-17 induces the PLC-gamma1-PKC-Raf-1-MEK-ERK1/2 signaling pathway.  相似文献   

16.
Polyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP). Under aerobic conditions, the PTP inactivation by 2-nitro-9,10-phenanthrenedione followed a pseudo-first-order process, with the rate of inactivation increasing nearly linearly with increasing inhibitor concentration, yielding apparent inactivation rate constants of 4300, 387, and 5200 M(-1) s(-1) at pH 7.2 against CD45, PTP1B, and LAR, respectively. The rate of CD45 inactivation increased approximately 25-fold from pH 6.0 to 7.5, with complete inactivation achieved using a catalytic amount (0.05 molar equiv) of the inhibitor. The quinone-catalyzed CD45 inactivation was prevented by catalase or superoxide dismutase. Inactivated CD45 after (125)I-9,10-phenanthrenedione treatment carried no radioactivity, indicating the absence of a stable inhibitor/enzyme complex. The activity of inactivated CD45 was partially restored ( approximately 10%) by hydroxylamine or dithiothreitol, supporting the presence of a small population of sulfenic acid or sulfenyl-amide species. Treatment of PTP1B with 2-nitro-9,10-phenanthrenedione resulted in the specific and sequential oxidation of the catalytic cysteine to the sulfinic and sulfonic acid. These results suggest that reactive oxygen species and the semiquinone radical, continuously generated during quinone-catalyzed redox cycling, mediate the specific catalytic cysteine oxidation. Naturally occurring quinones may act as efficient regulators of protein tyrosine phosphorylation in biological systems. Aberrant phosphotyrosine homeostasis resulting from continued polyaromatic hydrocarbon quinone exposure may play a significant role in their disease etiology.  相似文献   

17.
Monoacid-based PTP1B inhibitors with improved physiochemical properties have been investigated. A (2-hydroxy-phenoxy) acetic acid-based phosphotyrosyl mimetic has been linked with an optimized second arylphosphate binding site ligand to produce compound 20 with low micromolar potency against PTP1B, good selectivity over TCPTP (20-fold) and high cell permeability in the Caco-2 system.  相似文献   

18.
Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1   总被引:1,自引:0,他引:1  
TRPM2, a member of the transient receptor potential (TRP) superfamily, is a Ca2+-permeable channel, which mediates susceptibility to cell death following activation by oxidative stress, TNF, or -amyloid peptide. We determined that TRPM2 is rapidly tyrosine phosphorylated after stimulation with H2O2 or TNF. Inhibition of tyrosine phosphorylation with the tyrosine kinase inhibitors genistein or PP2 significantly reduced the increase in [Ca2+]i observed after H2O2 or TNF treatment in TRPM2-expressing cells, suggesting that phosphorylation is important in TRPM2 activation. Utilizing a TransSignal PDZ domain array blot to identify proteins which interact with TRPM2, we identified PTPL1 as a potential binding protein. PTPL1 is a widely expressed tyrosine phosphatase, which has a role in cell survival and tumorigenesis. Immunoprecipitation and glutathione-S-transferase pull-down assays confirmed that TRPM2 and PTPL1 interact. To examine the ability of PTPL1 to modulate phosphorylation or activation of TRPM2, PTPL1 was coexpressed with TRPM2 in human embryonic kidney-293T cells. This resulted in significantly reduced TRPM2 tyrosine phosphorylation, and inhibited the rise in [Ca2+]i and the loss of cell viability, which follow H2O2 or TNF treatment. Consistent with these findings, reduction in endogenous PTPL1 expression with small interfering RNA resulted in increased TRPM2 tyrosine phosphorylation, a significantly greater rise in [Ca2+]i following H2O2 treatment, and enhanced susceptibility to H2O2-induced cell death. Endogenous TRPM2 and PTPL1 was associated in U937-ecoR cells, confirming the physiological relevance of this interaction. These data demonstrate that tyrosine phosphorylation of TRPM2 is important in its activation and function and that inhibition of TRPM2 tyrosine phosphorylation reduces Ca2+ influx and protects cell viability. They also suggest that modulation of TRPM2 tyrosine phosphorylation is a mechanism through which PTPL1 may mediate resistance to cell death. transient receptor potential channels; oxidative stress  相似文献   

19.
20.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号