首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 106 CFU g−1 soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for 1 month, the microscale distribution of introduced bacteria was modified towards a more widely dispersed distribution. The quantitative data indicate that the microscale spatial distribution of an introduced strain may strongly limit its contacts with the members of an indigenous bacterial community. This could constitute an explanation to the low number of indigenous transconjugants found most of time when a plasmid-donor strain is introduced into soil.  相似文献   

2.
The spatial localization of the cells and the DNA of a genetically-engineered Escherichia coli population introduced into soil was investigated. Inoculated soils were size fractioned and bacterial numbers and E. coli EL 1003 specific chromosomal DNA target sequences were enumerated in each fraction using plate-counting and MPN-PCR, respectively. Different numbers of either indigenous or introduced bacteria were found in each fraction indicating that their distribution in the soil was non-uniform. The distributions of the indigenous bacteria and the E. coli cells within the size fractions were significantly different: the E. coli population was mainly associated with the dispersible clay fraction (79·0%) from which only 10·7% of the indigenous bacteria were recovered. The distribution of the E. coli target DNA sequences was in agreement with the location of the cells. The different distribution of the two populations is likely to restrict genetic interactions. These results are relevant to potential interactions between native soil microflora and populations introduced into soil for competitive purposes.  相似文献   

3.
The process of naphthalene degradation by indigenous, introduced, and transconjugant strains was studied in laboratory soil microcosms. Conjugation transfer of catabolic plasmids was demonstrated in naphthalene-contaminated soil. Both indigenous microorganisms and an introduced laboratory strain BS394 (pNF142::TnMod-OTc) served as donors of these plasmids. The indigenous bacterial degraders of naphthalene isolated from soil were identified as Pseudomonas putida and Pseudomonas fluorescens. The frequency of plasmid transfer in soil was 10(-5)-10(-4) per donor cell. The activity of the key enzymes of naphthalene biodegradation in indigenous and transconjugant strains was studied. Transconjugant strains harboring indigenous catabolic plasmids possessed high salicylate hydroxylase and low catechol-2,3-dioxygenase activities, in contrast to indigenous degraders, which had a high level of catechol-2,3-dioxygenase activity and a low level of salicylate hydroxylase. Naphthalene degradation in batch culture in liquid mineral medium was shown to accelerate due to cooperation of the indigenous naphthalene degrader P. fluorescens AP1 and the transconjugant strain P. putida KT2442 harboring the indigenous catabolic plasmid pAP35. The role of conjugative transfer of naphthalene biodegradation plasmids in acceleration of naphthalene degradation was demonstrated in laboratory soil microcosms.  相似文献   

4.
5.
One rhamnolipid-producing bacterial strain named Pseudomonas aeruginosa BSFD5 was isolated and characterized. Its rhlABRI cassette including necessary genes for rhamnolipid synthesis was cloned and transformed into the chromosome of P. putida KT2440 by a new random transposon vector without introducing antibiotic-resistance marker, generating a genetically engineered microorganism named P. putida KT2440-rhlABRI, which could stably express the rhlABRI cassette and produce rhamnolipid at a yield of 1.68?g?l(-1). In experiments using natural soil, it was shown that P. putida KT2440-rhlABRI could increase the dissolution of pyrene and thus promote its degradation by indigenous microorganisms. P. putida KT2440-rhlABRI thus demonstrated potential for enhancing the remediation of soils contaminated with polycyclic aromatic hydrocarbons.  相似文献   

6.
Abstract This work deals with the impact of a possible accidental pollutant, pyralene (Prodelec, France; PCBs in trichlorobenzene), intoduced into the soil. Its influence on the predator-prey relation between bacteria and amoebae was studied by comparing the population dynamics of (i) an inoculated bacterial population ( A. lipoferum ) chosen as a biological tracer, (ii) the indigenous bacterial microflora, (iii) the infigenous amoebae. In the absence of pyralene the inoculated bacterial population decreased from 107 to 104 bacteria g−1 soil (dw), grazed by the infigenous amoebae whose numbers increased 3-fold. In contrast, in presence of 2500 ppm of pyralene the introduced bacteria survived at a higher level (3·106 bacteria g−1 soil (dw)) while the number of amoebae diminished slightly. No predation occurred with PCB contamination. The indigenous bacterial microflora was not affected quantitatively by pyralene. In pure liquid culture with 500 ppm of pyralene added, bacterial growth was inhibited and an amoebal strain isolated from an inoculated uncontaminated soil was killed. We conclude that the active form of the amoebae were killed, and encystement was inhibited by pyralene in the soil. Hence the protozoa were unable to regulate the introduced A. lipoferum strain as they did in the absence of the pollutant.  相似文献   

7.
Pseudomonas putida CR30RNS (pADPTel) is an antibiotic-resistant strain with a recombinant plasmid that confers resistance to tellurite and the ability to catabolize atrazine. The survival of this strain as well as its ability to transfer genes for atrazine degradation and tellurite resistance to indigenous soil bacteria were tested in both fallow soil and canola (Brassica napus) rhizosphere by the use of parallel field and laboratory releases. Culturable CR30RNS (pADPTel) were enumerated in field and microcosm soils at 7- to 14-day intervals over 49 d. Strain CR30RNS (pADPTel) survived for up to 7 weeks in microcosm soils at a density of 10(4) CFU/g soil, whereas in field soils the population declined to 10(3) CFU/g soil by the fourth week. In contrast, when CR30RNS (pADPTel) was introduced into the soil as a seed coating of canola (B. napus 'Karoo'), the bacterium established at higher cell densities in the rhizosphere (10(6)-10(5) CFU/g fresh root mass), with no subsequent decrease in numbers. The presence of selective pressure (i.e., atrazine) had no significant effect on the survival of CR30RNS (pADPTel) in either field or microcosm soils. One year postinoculation field sites were examined for the presence of CR30RNS (pADPTel) and no evidence of culturable parental cells was observed when samples were plated onto selective media. However, the atzC and telAB gene segments were amplified from the field soils at that time. Under laboratory conditions, indigenous soil bacteria were capable of receiving and expressing the engineered plasmid construct at frequencies ranging from 1 to 10(-3) transconjugants per donor. However, no plasmid transfer to indigenous soil bacteria was detected in the field or microcosm soils regardless of the presence of canola rhizosphere and (or) the application of atrazine. Our results show that the survival and population size of P. putida CR30RNS (pADPTel) might be sufficient for degradation of environmental pollutants but that the transfer frequency was too low to be detected under the conditions of this study.  相似文献   

8.
Spermosphere establishment by bacteria which were coated onto seeds was studied using soybean seeds treated with four bacterial strains at levels of log10 1 to 4 colony-forming units (cfu) per seed planted in a field soil mix, and incubated 48 h. Each strain at every inoculum level developed spermosphere population densities of log10 4 to 8 cfu/seed, demonstrating an average multiplication of log10 3 cfu/seed. An alternative method was developed to differentially rank bacteria for spermosphere colonizing capacity, based upon incorporation of bacteria into a soil and monitoring the resulting spermosphere population densities around noninoculated seeds after 4 days at 14 degrees C. Fifty-seven bacterial strains which were isolated from soybean roots or from water samples, including Pseudomonas putida, P. putida biovar B, P. fluorescens, Serratia liquefaciens, Enterobacter aerogenes, and Bacillus spp. were tested in the spermosphere colonization assay. Average spermosphere population densities for the 57 strains ranged from 0 to log10 7.0 cfu/seed. Strains of a given taxon demonstrated marked diversity with ranges from 0 to log10 6.0 cfu/seed for Bacillus spp. and from log10 1.4 to 7.0 cfu/seed for Pseudomonas putida. The relative ranking of representative strains was consistent in repeating experiments. The potential usefulness of the assay for efforts to develop competitive bacterial inoculants for crop seeds is discussed.  相似文献   

9.
AIMS: The survival and activity of Rhodococcus sp. strain 1BN, inoculated into naphthalene-contaminated sandy-loam soil microcosms, were studied using classical and molecular methods. METHODS AND RESULTS: The naphthalene-degrading activity of 1BN in microcosms was examined through viable counts, CO2 production and naphthalene consumption, while its survival after inoculation was monitored by detecting the contemporary presence of alkane and naphthalene degradative genes and by analysing the 16S rDNA specific restriction profile. The inoculation of 1BN did not significantly enhance naphthalene degradation in the naphthalene-contaminated native soil, where 1BN maintained its catabolic activity also when in the presence of indigenous microflora. Instead the rate of naphthalene degradation by the inoculated 1BN was greater in sterile naphthalene-contaminated soil. The level of 1BN was only slightly higher after inoculation regardless of whether indigenous naphthalene-degrading bacteria were present or not and 1BN remained viable even when the substrate was depleted. CONCLUSIONS: This study documents the colonization and growth of 1BN in a non-sterile, naphthalene-added, sandy-loam soil having an active indigenous naphthalene-degrading population. SIGNIFICANCE AND IMPACT OF THE STUDY: An active and well-established naphthalene-degrading bacterial population in the native soil did not hamper the survival of the introduced 1BN that, through its activity, enhanced the mineralization rate of naphthalene.  相似文献   

10.
M. Toro  R. Azcon    J. Barea 《Applied microbiology》1997,63(11):4408-4412
The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants.  相似文献   

11.
We report a field study on plasmid mobilization in an agricultural soil. The influence of pig manure on the mobilization of the IncQ plasmid pIE723 by indigenous plasmids or by the IncP(alpha) plasmid pGP527 into the recipient Pseudomonas putida UWC1 (Rif(supr) Nal(supr)) was studied in field soil. Six plots were prepared in duplicate, three of which were treated with manure prior to inoculation of the donor and recipient strains. As a donor strain, either Escherichia coli J53(pIE723) or E. coli 600(pIE723, pGP527) was used. Putative transconjugants obtained on a selective medium were confirmed by DNA hybridization and PCR. Plasmid mobilization by indigenous mobilizing plasmids was observed on two occasions in manured soil. Manuring of soil significantly enhanced the frequency of pIE723 mobilization by pGP527, since mobilization frequencies into P. putida UWC1 were at least 10-fold higher in manured soil than in nonmanured soil. Enhanced numbers of P. putida UWC1 transconjugant and recipient colonies could be observed in manured soil throughout the 79-day field test. Transfer of pIE723 or pG527 into indigenous soil or rhizosphere bacteria could not be detected when indigenous bacteria isolated by selective cultivation were screened for the presence of these plasmids by DNA hybridization. Furthermore, the presence of IncN-, IncP-, or IncQ-specific sequences was confirmed in total community DNA extracted directly from the manured or nonmanured soil by PCR. IncW plasmids were detectable only in manured soil, indicating entry of these plasmids into soil via manure.  相似文献   

12.
The short term impact of 50 μM Hg(II) on soil bacterial community structure was evaluated in different microenvironments of a silt loam soil in order to determine the contribution of bacteria located in these microenvironments to the overall bacterial response to mercury spiking. Microenvironments and associated bacteria, designated as bacterial pools, were obtained by successive soil washes to separate the outer fraction, containing loosely associated bacteria, and the inner fraction, containing bacteria retained into aggregates, followed by a physical fractionation of the inner fraction to separate aggregates according to their size (size fractions). Indirect enumerations of viable heterotrophic (VH) and resistant (Hg(R)) bacteria were performed before and 30 days after mercury spiking. A ribosomal intergenic spacer analysis (RISA), combined with multivariate analysis, was used to compare modifications at the community level in the unfractionated soil and in the microenvironments. The spatial heterogeneity of the mercury impact was revealed by a higher increase of Hg(R) numbers in the outer fraction and in the coarse size fractions. Furthermore, shifts in RISA patterns of total community DNA indicated changes in the composition of the dominant bacterial populations in response to Hg(II) stress in the outer and in the clay size fractions. The heterogeneity of metal impact on indigenous bacteria, observed at a microscale level, is related to both the physical and chemical characteristics of the soil microenvironments governing mercury bioavailability and to the bacterial composition present before spiking.  相似文献   

13.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

14.
15.
Introduction of a large quantity of exogenous microorganisms may disrupt a local ecosystem and affect the natural microflora. In this work we investigated the effects of the introduction of a plant growth promoting strain of Burkholderia cepacia into the rhizosphere of maize on both indigenous B. cepacia populations and microbial community structure of total culturable bacteria using the concept of r/K strategy. Moreover we studied the distribution of bacterial populations in the root system at various soil depths. Seed bacterization was used as application method. Root colonization of the introduced strain occurred mainly on roots close to the plant stem, whereas indigenous B. cepacia was recovered at higher amounts from the lower parts of root systems of mature plants. As far as total culturable bacteria are concerned, an almost uniform distribution in the root system of mature plants was observed. The release of the exogenous bacterial strain affected mainly the microbial populations of young growing plants rather than mature plants. Indeed it caused only short-term perturbations in the microbial community of maize rhizosphere. Colonization of maize roots by indigenous B. cepacia was not significantly affected by the presence of the exogenous strain.  相似文献   

16.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

17.
The effect of a native peanut (Arachis hypogaea) microsymbiont strain (streptomycin resistant mutant) introduced into acid soil on the indigenous micro-organism population as well as the survival of this isolate was studied. Although the isolate survived at a fairly low population level after the 3 month period of soil incubation, it maintained its antibiotic resistance. Slight changes in the total bacteria and fungi soil populations as a result of this inoculation were also detected.  相似文献   

18.
Given that a large proportion of the bacteria colonizing the roots of plants is capable of producing N-acyl-L-homoserine lactone (AHL) molecules, it appears likely that these bacterial pheromones may serve as signals for communication between cells of different species. In this study, we have developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL-negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated into the chromosome of AHL-negative P. putida strain F117 an AHL sensor cassette that responds to the presence of long-chain AHLs with the expression of Gfp. This monitor strain was used to demonstrate that the indigenous bacterial community colonizing the roots of tomato plants growing in nonsterile soil produces AHL molecules. The results strongly support the view that AHL signal molecules serve as a universal language for communication between the different bacterial populations of the rhizosphere consortium.  相似文献   

19.
Very little is known about the spatial organization of soil microbes across scales that are relevant both to microbial function and to field-based processes. The spatial distributions of microbes and microbially mediated activity have a high intrinsic variability. This can present problems when trying to quantify the effects of disturbance, management practices, or climate change on soil microbial systems and attendant function. A spatial sampling regime was implemented in an arable field. Cores of undisturbed soil were sampled from a 3 × 3 × 0.9 m volume of soil (topsoil and subsoil) and a biological thin section, in which the in situ distribution of bacteria could be quantified, prepared from each core. Geostatistical analysis was used to quantify the nature of spatial structure from micrometers to meters and spatial point pattern analysis to test for deviations from complete spatial randomness of mapped bacteria. Spatial structure in the topsoil was only found at the microscale (micrometers), whereas evidence for nested scales of spatial structure was found in the subsoil (at the microscale, and at the centimeter to meter scale). Geostatistical ranges of spatial structure at the micro scale were greater in the topsoil and tended to decrease with depth in the subsoil. Evidence for spatial aggregation in bacteria was stronger in the topsoil and also decreased with depth in the subsoil, though extremely high degrees of aggregation were found at very short distances in the deep subsoil. The data suggest that factors that regulate the distribution of bacteria in the subsoil operate at two scales, in contrast to one scale in the topsoil, and that bacterial patches are larger and more prevalent in the topsoil.  相似文献   

20.
Pseudomonas putida EEZ15(pWW0-EB62) is a phosphinothricin (PPT)-resistant strain with a recombinant TOL plasmid which allows the strain to grow on p-ethylbenzoate. The survival of this strain in sterile agricultural soils depends on the physicochemical properties of the soil. The recombinant pWW0-EB62 plasmid and its catabolic functions were stable for periods of up to 1 month in bacteria introduced in unamended soils and only conferred selective advantage to the host bacteria without the plasmid or with the natural pWW0 plasmid when the soils were amended with low amounts of p-ethylbenzoate. The addition to soils of aromatics that are cometabolized by P. putida EEZ15(pWW0-EB62) had a detrimental effect on the survival of the bacteria, whereas low amounts of aromatics that are not metabolized by this bacterium had no effect on their survival. Survival of P. putida EEZ15(pWW0-EB62) was better at 4 and 25 degrees C than at 37 degrees C. The host bacterium carrying the recombinant pWW0-EB62 plasmid was established in unsterile soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号