首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of biological membrane fusion can be analysed by topological methods. Mathematical analysis of the fusion process of vesicles indicated two significant facts: the formation of an inner, transient structure (hexagonal phase - H(II)) and a translocation of some lipids within the membrane. This shift had a vector character and only occurred from the outer to the inner layer. Model membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) was studied. (31)P- and (1)H-NMR methods were used to describe the process of fusion. (31)P-NMR spectra of multilamellar vesicles (MLV) were taken at various temperatures and concentrations of Ca(2+) ions (natural fusiogenic agent). A (31)P-NMR spectrum with the characteristic shape of the H(II) phase was obtained for the molar Ca(2+)/PS ratio of 2.0. During the study, (1)H-NMR and (31)P-NMR spectra for small unilamellar vesicle (SUV), which were dependent on time (concentration of Pr(3+) ions was constant), were also recorded. The presence of the paramagnetic Pr(3+) ions permits observation of separate signals from the hydrophilic part of the inner and outer lipid bilayers. The obtained results suggest that in the process of fusion translocation of phospholipid molecules takes place from the outer to the inner layer of the vesicle and size of the vesicles increase. The NMR study has showed that the intermediate state of the fusion process caused by Ca(2+) ions is the H(II) phase. The experimental results obtained are in agreement with the topological model as well.  相似文献   

2.
The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10-40 degrees C. The fusogenic activity of the cations decreases in the sequence Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mg2+ for cholesterol concentrations in the range 20-40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25 degrees C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25 degrees C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30 degrees C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40 degrees C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ greater than Sr2+ greater than Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Cationic, triple-chain amphiphiles promote vesicle fusion more than structurally related double-chain or single-chain analogues. Two types of vesicle fusion experiments were conducted, mixing of oppositely charged vesicles and acid-triggered self-fusion of vesicles composed of cationic amphiphile and anionic cholesteryl hemisuccinate (CHEMS). Vesicle fusion was monitored by standard fluorescence assays for intermembrane lipid mixing, aqueous contents mixing and leakage. Differential scanning calorimetry was used to show that triple-chain amphiphiles lower the lamellar-inverse hexagonal (L(alpha)-H(II)) phase transition temperature for dipalmitoleoylphosphatidylethanolamine. The triple-chain amphiphiles may enhance vesicle fusion because they can stabilize the inversely curved membrane surfaces of the fusion intermediates, however, other factors such as extended conformation, packing defects, chain motion, or surface dehydration may also contribute. From the perspective of drug delivery, the results suggest that vesicles containing cationic, triple-chain amphiphiles (and cationic, cone-shaped amphiphiles in general) may be effective as fusogenic delivery capsules.  相似文献   

4.
The ability of lipid asymmetry to regulate Ca(2+)-stimulated fusion between large unilamellar vesicles has been investigated. It is shown that for 100-nm-diameter LUVs composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, phosphatidylinositol, and dioleoylphosphatidic acid (DOPC/DOPE/PI/DOPA; 25:60:5:10) rapid and essentially complete fusion is observed by fluorescent resonance energy transfer techniques when Ca2+ (8 mM) is added. Alternatively, for LUVs with the same lipid composition but when DOPA was sequestered to the inner monolayer by incubation in the presence of a pH gradient (interior basic), little or no fusion is observed on addition of Ca2+. It is shown that the extent of Ca(2+)-induced fusion correlates with the amount of exterior DOPA. Further, it is shown that LUVs containing only 2.5 mol % DOPA, but where all the DOPA is in the outer monolayer, can be induced to fuse to the same extent and with the same rate as LUVs containing 5 mol % DOPA. These results strongly support a regulatory role for lipid asymmetry in membrane fusion and indicate that the fusogenic tendencies of lipid bilayers are largely determined by the properties of the monolayers proximate to the fusion interface.  相似文献   

5.
Prothrombin is a gamma-carboxyglutamic acid-containing protein that binds to phospholipid vesicles in the presence of calcium ions after undergoing a metal ion-induced conformational transition. To integrate recent data into a scheme that is compatible with our knowledge of prothrombin-metal interaction, we have proposed a new model of prothrombin structure. In this model prothrombin undergoes two metal-dependent conformational transitions: PT----PT'----PT*. The first transition is not cation-specific, but the second transition is metal-selective for Ca(II), Sr(II), or Ba(II). Only the PT* conformer binds to phospholipid surfaces. To test this model, anti-prothrombin antibodies that only bind to prothrombin in the presence of Ca(II) but not Mg(II) (PT*-specific) were isolated, and termed anti-prothrombin X Ca(II)-specific. Half-maximal binding of antibody to prothrombin was observed at 0.1 mM CaCl2 or 1 mM SrCl2, but no binding was observed with Mg(II), Mn(II), or Ba(II). However, prothrombin in the presence of both Mg(II)/Ba(II) or Mn(II)/Ba(II) demonstrated significant interaction with the antibody. Prothrombin binding to phospholipid vesicles was inhibited by the anti-prothrombin X Ca(II)-specific antibody or its Fab fragment, but was not inhibited by anti-prothrombin X Mg(II) antibody or its Fab fragment directed at the PT' conformer. These results support this three-state model for prothrombin. The metal specificity characteristic of prothrombin-phospholipid interaction is a property required for the expression of the phospholipid-binding site in the binary prothrombin-metal complex.  相似文献   

6.
Zheng J  Li Z  Wu A  Zhou H 《Biophysical chemistry》2003,104(1):37-43
As counterions of DNA on mica, Mg(2+), Ca(2+), Sr(2+) and Ba(2+) were used for clarifying whether DNA molecules equilibrate or are trapped on mica surface. End to end distance and contour lengths were determined from statistical analysis of AFM data. It was revealed that DNA molecules can equilibrate on mica when Mg(2+), Ca(2+) and Sr(2+) are counterions. When Ba(2+) is present, significantly crossovered DNA molecules indicate that it is most difficult for DNA to equilibrate on mica and the trapping degree is different under different preparation conditions. In the presence of ethanol, using AFM we have also observed the dependence of B-A conformational transition on counterion identities. The four alkaline earth metal ions cause the B-A transition in different degrees, in which Sr(2+) induces the greatest structural transition.  相似文献   

7.
The interaction of Ca2+ and Mg2+ with phosphatidylserine (PS) vesicles in 0.1 M NaCl aqueous solution was studied by equilibrium dialysis binding, X-ray diffraction, batch microcalorimetry, kinetics of cation-induced vesicle aggregation, release of vesicle contents, and fusion. Addition of either cation causes aggregation of PS vesicles and produces complexes with similar stoichiometry (1:2 cation/PS) at saturating concentrations, although the details of the interactions and the resulting complexes are quite different. Addition of Ca2+ to PS vesicles at T greater than or equal to 25 degrees C induces the formation of an "anhydrous" complex of closely apposed membranes with highly ordered crystalline acyl chains and a very high transition temperature (Tc greater than 100 degrees C). The formation of this complex is accompanied by a release of heat (5.5 kcal/mol), rapid release of vesicle contents, and fusion of the vesicles into larger membranous structures. By contrast, addition of Mg2+ produces a complex with PS which is much more hydrated, has no crystallization of the acyl chains at T greater than or equal to 20 degrees C, and has comparatively little fusion. Studies with both Ca2+ and Mg2+ added simultaneously indicate that there is a synergistic effect between the two cations, which results in an enhancement of the ability of Ca2+ to form its specific complex with PS at lower concentrations. The presence of the erythrocyte protein "spectrin" inhibits this synergism and interferes with the formation of the specific PS/Ca complex. It also inhibits the fusion of PS vesicles. It is proposed that the unique PS/Ca complex, which involves close apposition of vesicle membranes, is an intermembrane "trans" complex. We further propose that such a complex is a key step for the resultant phase transition and fusion of PS vesicles. By contrast, the PS/Mg complex is proposed to be a "cis" complex with respect to each membrane. The results are discussed in terms of the mechanism of membrane fusion.  相似文献   

8.
We have measured the phase behavior of mixed dipentadecanoylphosphatidylglycerol (DC15PG)/dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUV) in the presence of saturating (greater than 98% occupancy of binding sites) concentrations of bovine prothrombin fragment 1 and 5 mM Ca2+. Binding of fragment 1 in the presence of Ca2+ was verified by an increase in 90 degrees light scattering. Only in the cases of DC15PG/DMPC SUV below their phase transition and of pure DMPC SUV were such light scattering measurements not reversible upon addition of ethylenediaminetetraacetic acid to complex Ca2+. Phase-behavior changes of DC15PG/DMPC SUV as monitored by diphenylhexatriene fluorescence anisotropy occurred in concert with the binding of fragment 1. The major effects of peptide binding on SUV phase behavior were to raise the phase-transition temperature by 2-15 degrees C, depending on vesicle composition, and, in general, to make the phase diagram for these small vesicles closely resemble that of large vesicles. No evidence was obtained for the existence of lateral membrane domains with distinct compositions induced by the binding of prothrombin fragment 1 plus Ca2+. Surprisingly, fragment 1 without Ca2+ also altered the phase behavior of DC15PG/DMPC SUV. Most striking was the effect of fragment 1 (with or without Ca2+) on DMPC SUV phase behavior. Freeze-fracture electron microscopy demonstrated that pure DMPC vesicles were induced to fuse in the presence of fragment 1, while vesicles containing DC15PG remained intact. The rate of DMPC SUV fusion (followed by 90 degrees light scattering) increased with increasing fragment 1 concentration but was not saturable up to 40 microM fragment 1, suggesting a weak, nonspecific interaction between fragment 1 and the neutral phospholipid vesicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
《The Journal of cell biology》1993,123(6):1845-1855
Synapsin I is a synaptic vesicle-specific phosphoprotein composed of a globular and hydrophobic head and of a proline-rich, elongated and basic tail. Synapsin I binds with high affinity to phospholipid and protein components of synaptic vesicles. The head region of the protein has a very high surface activity, strongly interacts with acidic phospholipids and penetrates the hydrophobic core of the vesicle membrane. In the present paper, we have investigated the possible functional effects of the interaction between synapsin I and vesicle phospholipids. Synapsin I enhances both the rate and the extent of Ca(2+)-dependent membrane fusion, although it has no detectable fusogenic activity per se. This effect, which appears to be independent of synapsin I phosphorylation and localized to the head region of the protein, is attributable to aggregation of adjacent vesicles. The facilitation of Ca(2+)-induced liposome fusion is maximal at 50-80% of vesicle saturation and then decreases steeply, whereas vesicle aggregation does not show this biphasic behavior. Association of synapsin I with phospholipid bilayers does not induce membrane destabilization. Rather, 31P-nuclear magnetic resonance spectroscopy demonstrated that synapsin I inhibits the transition of membrane phospholipids from the bilayer (L alpha) to the inverted hexagonal (HII) phase induced either by increases in temperature or by Ca2+. These properties might contribute to the remarkable selectivity of the fusion of synaptic vesicles with the presynaptic plasma membrane during exocytosis.  相似文献   

10.
Calcium (Ca(2+)) dynamics were evaluated in fluorescently labeled sea urchin secretory vesicles using confocal microscopy. 71% of the vesicles examined exhibited one or more transient increases in the fluorescence signal that was damped in time. The detection of transient increases in signal was dependent upon the affinity of the fluorescence indicator; the free Ca(2+) concentration in the secretory vesicles was estimated to be in the range of ~10 to 100μM. Non-linear stochastic analysis revealed the presence of extra variance in the Ca(2+) dependent fluorescence signal. This noise process increased linearly with the amplitude of the Ca(2+) signal. Both the magnitude and spatial properties of this noise process were dependent upon the activity of vesicle p-type (Ca(v)2.1) Ca(2+) channels. Blocking the p-type Ca(2+) channels with ω-agatoxin decreased signal variance, and altered the spatial noise pattern within the vesicle. These fluorescence signal properties are consistent with vesicle Ca(2+) dynamics and not simply due to obvious physical properties such as gross movement artifacts or pH driven changes in Ca(2+) indicator fluorescence. The results suggest that the free Ca(2+) content of cortical secretory vesicles is dynamic; this property may modulate the exocytotic fusion process.  相似文献   

11.
The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs) to control the fusion process. We combined large unilamellar vesicles (LUVs) containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.  相似文献   

12.
We have employed both small unilamellar vesicles (SUV) and large unilamellar vesicles formed by the reverse phase evaporation technique (REV) to study the initial kinetics of membrane aggregation and fusion. Stopped flow measurements of the calcium-induced changes in the turbidity of SUV and REV, formed from 1:1 (mol/mol) mixtures of bovine phosphatidylserine (PS) and Escherichia coli phosphatidylethanolamine (PE), were used to follow particle aggregation. Simultaneous measurements of the fluorescence resonance energy transfer from N-(7-nitro2,1,3-benzoxadiazol-4-yl) (NBD)-PE to rhodamine (Rho)-PE incorporated into the vesicle bilayers established that 1) both initial aggregation and fusion can be described as a bimolecular process and 2) the rate-limiting step of membrane fusion is aggregation. Thus fusion takes place in the microsecond time domain. Parallel experiments, which simultaneously measured aggregation and the dequenching of encapsulated carboxyfluorescein (CF) in the presence and absence of antifluorescein antibodies in the suspension medium, established that the small unilamellar vesicles rapidly lose their contents of CF as they fuse. On the other hand, the first few cycles of fusion of the large unilamellar vesicles are nonleaky, but leakage develops within 1-2 s as the particles grow in size. Thus the results demonstrate that the SUV are poor models for the study of nonleaky fusion, while the REV must be carefully tested before unambiguous interpretation of fusion assays involving the formation of tight complexes (such as the terbium-dipicolinic assay) can be made. NBD-PE undergoes very rapid, Ca2+-promoted changes in quantum yield which can obscure the resonance energy transfer signals. Thus data from the NBD-PE/Rho-PE energy transfer pair must be carefully scrutinized for artifacts.  相似文献   

13.
Strontium (Sr(2+)), Barium (Ba(2+)) and Lanthanum (La(3+)) can substitute for Ca(2+) in driving synaptic transmission during membrane depolarization. Ion recognition at the polyglutamate motif (EEEE), comprising the channel selectivity-filter, during voltage-driven transitions, controls the kinetics of the voltage-gated calcium channel (VGCC) and its interactions with the synaptic proteins. We tested the effect of different charge carriers on evoked-release, as a means of exploring the involvement of VGCC in the fusion pore configuration. Employing amperometry recordings in single bovine chromaffin cells we show that the size of the fusion pore, designated by the 'foot'-amplitude, was increased when Ba(2+) substituted for Ca(2+) and decreased, with La(3+). The fusion pore stability, indicated by 'foot'-width, was decreased in La(3+). Also, the mean open time of the fusion pore (tau(fp)) was significantly lower in Sr(2+) and La(3+) compared to Ba(2+) and Ca(2+). These cations when occupying the selectivity filter reduced the spike frequency in the order of Ca(2+) > Sr(2+) > Ba(2+) > La(3+), which is parallel to the reduction in total catecholamine release. The correlation between ion binding at the selectivity filter and fusion pore properties supports a model in which the Ca(2+) channel regulates secretion through a site at the selectivity filter, upstream to cation entry into the cell.  相似文献   

14.
The ability of alkaline earth metals (M2+) to substitute for Ca2+ in Na+-Ca2+ exchange was examined in sarcolemmal vesicles isolated from the canine heart. 85Sr2+ and 133Ba2+, in addition to 45Ca2+, were used to determine the characteristics of Na+-M2+ exchange. The Na+i-dependent M2+ uptake was measured as a function of time, with t ranging from 0.5 to 360 s, [Na+]i = 140 mM and [M2+]o = 40 microM. This function was linear for Ca2+ and Sr2+ uptake for approx. 6 s and for Ba2+ for about 60 s. Plateau levels were achieved within 120 s for Ca2+ and Sr2+ but Ba2+ took considerably longer. The Km values for Na+-M2+ exchange, derived from Eadie-Hofstee plots, were 30, 58, and 73 microM for Ca2+, Sr2+ and Ba2+, respectively. The Na+i-dependent uptake of all three ions was stimulated in the presence of 0.36 microM valinomycin. Na+-Ca2+ exchange was also measured in the presence of either 20 microM Sr2+ or 100 microM Ba2+. Both of these ions behaved (at these concentrations) as competitive inhibitors of Na+-Ca2+ exchange with the KI being 32 microM for Sr2+ and 92 microM for Ba2+. Passive efflux was determined by first allowing Na+-M2+ exchange to continue to plateau values and then diluting the loaded vesicles in the presence of EGTA. The rate constants for the passive efflux were 8.4, 6.3 and 4.4 min-1 for Ca2+, Sr2+ and Ba2+, respectively.  相似文献   

15.
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).  相似文献   

16.
We have previously demonstrated that H2O2 at millimolar concentrations induces Ca(2+) release from actively loaded sarcoplasmic reticulum (SR) vesicles and induces biphasic [(3)H]ryanodine binding behavior. Considering that hypochlorous acid (HOCl) is a related free radical and has been demonstrated to be a more effective oxidant of proteins, we evaluated the effects of HOCl on sarcoplasmic reticulum Ca(2+)-channel release mechanism. In a concentration-dependent manner, HOCl activates the SR Ca(2+) release channel and induces rapid release of Ca from actively loaded vesicles. HOCl-induced Ca(2+) release is inhibited in the presence of millimolar concentrations of DMSO. High-affinity [(3)H]ryanodine binding is also enhanced at concentrations from 10 to 100 microM. At HOCl concentrations of >100 microM, equilibrium binding is inhibited. HOCl stimulation of binding is inhibited by the addition of dithiothreitol. The direct interaction between HOCl and the Ca(2+) release mechanism was further demonstrated in single-channel reconstitution experiments. HOCl, at 20 microM, activated the Ca(2+) release channel after fusion of a SR vesicle to a bilayer lipid membrane. At 40 microM, Ca(2+)-channel activity was inhibited. Pretreatment of SR vesicles with HOCl inhibited the fluorescence development of a fluorogenic probe specific to thiol groups critical to channel function. These results suggest that HOCl at micromolar concentrations can modify SR Ca(2+) handling.  相似文献   

17.
To determine the functional role of the metal-dependent conformational changes in Factor IX, two populations of conformation-specific anti-Factor IX antibodies were prepared. Anti-Factor IX X Mg(II) antibodies bind to Factor IX in the presence of Mg(II) and other metal ions, but not in the absence of metal ions. Anti-Factor IX X Ca(II)-specific antibodies bind to Factor IX in the presence of Ca(II) and Sr(II), but not in the presence of Mn(II), Mg(II), and Ba(II). In the presence of a metal ion that induces the conformational transition recognized by the anti-Factor IX X Mg(II) antibodies, the concentrations of CaCl2 and SrCl2 needed for the half-maximal binding of the anti-Factor IX X Ca(II)-specific antibodies to Factor IX were reduced 3- and 20-fold, respectively. Factor IX binding to phospholipid vesicles was inhibited by the Fab fragments of the anti-Factor IX X Ca(II)-specific antibodies, but was not inhibited by the Fab fragments of the anti-Factor IX X Mg(II) antibodies. Factor XIa activation of Factor IX was also inhibited by the Fab fragments of the anti-Factor IX X Ca(II)-specific antibodies, but not by the anti-Factor IX X Mg(II) antibodies. These results support the hypothesis that Factor IX undergoes two metal-dependent conformational transitions: FIX----FIX'----FIX*. The first transition (FIX----FIX') is metal-dependent but cation-nonselective; the second transition (FIX'----FIX*) is metal-selective for Ca(II) or Sr(II). The second transition results in the expression of conformational determinants necessary for membrane binding and the Ca(II)-dependent activation of Factor IX by Factor XIa. These results suggest chemical similarity between a surface of a domain of Factor XIa and phospholipid vesicles, both of which interact with Factor IX in the presence of Ca(II).  相似文献   

18.
Sarcoplasmic reticulum (SR) vesicles, prepared from rabbit skeletal muscle, were characterized by functional and binding assays and incorporated into planar lipid bilayers. Single-channel activity was recorded in an asymmetric calcium buffer system and studied under voltage clamp conditions. Under these experimental conditions, a large conductance (100 pS in 50 mM Ca2+ trans) divalent cation selective channel displaying high ruthenium red and low Ca2+ sensitivity was identified. This pathway has been previously described as the Ca(2+)-release channel of the SR of skeletal muscle. We now report that in the presence of a Mg-ATP complex, the Ca2+ sensitivity of the open probability of this channel is increased. Furthermore, we show that micromolar cis Sr2+ concentrations also activated the Ca(2+)-release channel. The open probability of the Sr(2+)-activated channel was increased in the presence of a 2 mM Mg-ATP complex and adenine nucleotides on the cytoplasmic face of the Ca(2+)-release channel. These results were confirmed by isotopic flux measurements using passively 45Ca(2+)-loaded vesicles. In the latter case, the presence of extravesicular AMP-PCP (the nonhydrolysable ATP analog) enhanced the percentage of 45Ca2+ release induced either by Ca2+ or Sr2+ activation. In conclusion our findings emphasize the fact that the divalent cation activation of the Ca(2+)-release channel may be induced by Ca2+ and Sr2+, but not by Ba2+, in the presence of adenine nucleotides. Furthermore, they support the view that in situ Ca2+ and Mg-ATP complexes are involved in modulating the gating mechanism of this specific pathway.  相似文献   

19.
Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger-a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy. We find that they mediate the formation and consumption of docked small unilamellar vesicles (SUVs) via the following sequence of events: Synaptotagmin 1 mediates v-SNARE-SUV docking to t-SNARE-GUVs in a Ca(2+)-independent manner. Complexin blocks vesicle consumption, causing accumulation of docked vesicles. Together with synaptotagmin 1, complexin synchronizes and stimulates rapid fusion of accumulated docked vesicles in response to physiological Ca(2+) concentrations. Thus, the reconstituted assay resolves both the stimulatory and inhibitory function of complexin and mimics key aspects of synaptic vesicle fusion.  相似文献   

20.
Dynamic light scattering has been used to study the temperature dependence of Ca2+-induced fusion of phosphatidylserine vesicles and mixed vesicles containing phosphatidylserine and different phosphatidylcholines. The final vesicle size after Ca2+ and EDTA incubation serves as a measure of the extent of fusion. With phosphatidylserine vesicles, the extent of fusion shows a sharp maximum at an incubation temperature which depends on the Ca2+ concentration between 0.8 and 2 mM. The shift in the fusion peak temperature with Ca2+ concentration is similar to the typical shift in the phase transition temperature with divalent cation concentration in acidic phospholipids. The results suggest a direct correlation between the fusion peak temperature and the phase transition temperature in the presence of Ca2+ prior to fusion. With mixed vesicles containing up to 33% of a phosphatidylcholine in at least 2 mM Ca2+, the extent of fusion as a function of incubation temperature also shows a maximum. The fusion peak temperature is essentially independent of the quantity and type of phosphatidylcholine and the Ca2+ concentration, and identical to that with pure phosphatidylserine in excess Ca2+. The results imply that Ca2+- induced molecular segregation occurs first, and fusion subsequently takes place between pure phosphatidylserine domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号