首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1. Horse spleen apoferritin catalyses the oxidation of Fe(2+) to Fe(3+) with molecular O(2) as electron acceptor under conditions where a number of other proteins have no such effect. The product is similar to ferritin by a number of criteria. 2. The progress curve is hyperbolic and the increase in initial velocity is linear with increasing apoferritin concentration. With respect to Fe(2+) the reaction follows Michaelis-Menten kinetics. The pH-dependence of the reaction was determined between pH4.3 and 6.0. 3. Modification of both tryptophan residues/apoferritin subunit with 2-nitrophenylsulphenyl chloride does not affect either k(cat.) or K(m) for the oxidation. Neither does the guanidination of seven out of nine lysine residues/subunit, the modification of nine out of ten arginine residues/subunit with cyclohexanedione, or the nitration of one out of five tyrosine residues/subunit with tetranitromethane. 4. The carboxymethylation of two out of three cysteine residues/subunit and of one out of six histidine residues/subunit can be achieved with iodoacetic acid. This carboxymethylated apoferritin is completely inactive in Fe(2+) oxidation. 5. Apoferritin does not take up Fe(3+). It appears from these results that Fe(2+) is the form in which iron is taken up by ferritin in a reaction where the protein acts as an enzyme which traps the product in the interior of the protein shell.  相似文献   

2.
The states of tryptophan residues in castor bean hemagglutinin (CBH) were analyzed by solvent perturbation studies employing ultraviolet difference spectroscopy. Eight out of 22 tryptophan residues in CBH were exposed to ethylene glycol and glycerol, suggesting that the remaining 14 tryptophan residues are buried in the interior of the CBH molecule. The fraction of tryptophan residues accessible to the perturbant decreased with increase in the molecular size of the perturbant, and only 2 tryptophan residues were exposed to polyethylene glycol 600. Upon binding with raffinose, 2 tryptophan residues were shielded from the perturbing effect of the solvent, and binding of lactose reduced the number of tryptophan residues accessible to the perturbant by 1 mol per mol of protein. Binding of galactose, however, did not change the accessibility of tryptophan to the perturbant. On the other hand, the accessibility of tyrosine to the perturbant remained unchanged after binding with raffinose and lactose, suggesting that tyrosine is not directly involved in the saccharide binding of CBH. Based on these results, it is proposed that one tryptophan residue at the saccharide-binding site on each B-chain of CBH lies on the surface of the protein molecule and is located at a subsite which is accessible to a glucopyranoside moiety in the lactose molecule or a glycopyranosyl-fructofuranosyl moiety in the raffinose molecule, whereas such a residue is not present at the galactopyranoside-recognition site.  相似文献   

3.
Reaction of horse methemoglobin with O-methylisourea at pH 10.2 results in 95% conversion of lysine residues to homoarginine. Analysis of the chymotryptic peptides showed that no single ?-amino group was unreactive. Guanidination decreases the dependence of the sedimentation coefficient on hydrogen ion concentration in the range of pH 8 to 11 and did not affect the dependence on protein concentration at pH 7. These results support the conclusion that the lysine side chains involved in subunit contacts have sufficient freedom to accommodate the small changes in bulk and geometry associated with guanidination.  相似文献   

4.
Specific chemical modifications of amino acid residues were performed on purified, native link protein from bovine articular cartilage. The effects of these on link protein's interactions with hyaluronate and bovine articular cartilage proteoglycan were assayed by gel chromatography. Interaction with hyaluronate was significantly perturbed by modification of lysine, arginine, tyrosine and aspartic/glutamic acid residues, but not histidine and tryptophan residues. No free, accessible sulphydryl group was found on native link protein. The requirement for unmodified lysine and arginine residues resembles that of the hyaluronate-binding site of pig laryngeal cartilage proteoglycan (Hardingham, T.E., Ewins, R.J.F. and Muir, H. (1976) Biochem. J. 157, 127-143). In contrast, proteoglycan binding was only significantly perturbed by the loss of arginine residues. This resistance may reflect hydrophobicity of the binding site or masking of the site from chemical modification by link protein self-association. Amidation of carboxyl groups, which destroyed hyaluronate binding but left proteoglycan binding intact, provides a means of generating a monofunctional link protein molecule of potential use in proteoglycan aggregation studies.  相似文献   

5.
Two synthetic peptides from the beta 2 subunit of tryptophan synthase have been studied by 1H-NMR spectroscopy at 300 MHz. One peptide, His-Gly-Arg-Val-Gly-Ile-Tyr-Phe-Gly-Met-Lys (peptide 11; Ile, isoleucine) is antigenic and binds with a high affinity to a monoclonal antibody that recognizes the native beta 2 subunit. The second peptide, His-Gly-Arg-Val-Gly-Ile-Tyr-Phe (peptide 8) reacts very weakly with the antibody. The 1H-NMR spectra of the two peptides have been assigned from two-dimensional techniques in H2O, 2H2O and (2H6) dimethyl sulfoxide [(2H6)Me2SO]. The structure has been evaluated through analysis of nuclear Overhauser effects, coupling constants, amide-proton exchange rates and their temperature coefficients, and chemical shifts. In aqueous solvent, the C-terminal part of peptide 11 presents some structure centered around residues Phe-Gly-Met. The relationship between the structure found in peptide 11 and its antigenic nature is discussed.  相似文献   

6.
We have evaluated the effect of lysine guanidination in peptides and proteins on the dissociation of protonated ions in the gas phase. The dissociation of guanidinated model peptide ions compared to their unmodified forms showed behavior consistent with concepts of proton mobility as a major factor in determining favored fragmentation channels. Reduction of proton mobility associated with lysine guanidination was reflected by a relative increase in cleavages occurring C-terminal to aspartic acid residues as well as increases in small molecule losses. To evaluate the effect of guanidination on the dissociation behavior of whole protein ions, bovine ubiquitin was selected as a model. Essentially, all of the amide bond cleavages associated with the +10 charge state of fully guanidinated ubiquitin were observed to occur C-terminal to aspartic acid residues, unlike the dissociation behavior of the +10 ion of the unmodified protein, where competing cleavage N-terminal to proline and nonspecific amide bond cleavages were also observed. The +8 and lower charge states of the guanidinated protein showed prominent losses of small neutral molecules. This overall fragmentation behavior is consistent with current hypotheses regarding whole protein dissociation that consider proton mobility and intramolecular charge solvation as important factors in determining favored dissociation channels, and are also consistent with the fragmentation behaviors observed for the guanidinated model peptide ions. Further evaluation of the utility of condensed phase guanidination of whole proteins is necessary but the results described here confirm that guanidination can be an effective strategy for enhancing C-terminal aspartic acid cleavages. Gas phase dissociation exclusively at aspartic acid residues, especially for whole protein ions, could be useful in identifying and characterizing proteins via tandem mass spectrometry of whole protein ions.  相似文献   

7.
We have used circular dichroism measurements to compare the thermal unfolding of the wild type tryptophan synthase alpha subunit from Salmonella typhimurium with that of seven mutant forms with single amino acid replacements at two active site residues. Glutamic acid 49 has been replaced by phenylalanine, glutamine, or aspartic acid. Aspartic acid 60 has been replaced by alanine, aspartic acid, asparagine, or tyrosine. Thermodynamic properties (delta G, delta H, delta S, and Tm) of the wild type and mutant forms have been determined experimentally by measuring the free energy of unfolding as a function of temperature. Increasing the pH from 7.0 to 8.8 decreases the tm of the wild type alpha subunit from 56 to 45 degrees C. The thermal unfolding of the wild type alpha subunit and of six of the seven mutant forms can be described as reversible, two-state transitions. In contrast, the melting curve of a mutant alpha subunit in which aspartic acid 60 is replaced by tyrosine indicates the presence of a folding intermediate which may correspond to a "molten globule." Correlations between our observations and previous folding studies and the X-ray crystallographic structure are presented. Substitution of glutamic acid 49, which is located in the hydrophobic "pit" of an eight-fold alpha/beta barrel, by a hydrophobic phenylalanine residue increases the tm from 56 to 60 degrees C. In contrast, replacement of aspartic acid 60, which is accessible to solvent, results in small reductions in the thermal stability.  相似文献   

8.
Lysozyme is a sweet-tasting protein with a sweetness threshold value of around 7 microM. To clarify the effect of basicity at the side chain of lysine residues on the threshold values of sweetness, charge-specific chemical modifications such as guanidination, acetylation and phosphopyridoxylation of lysine residues were performed. Sensory analysis showed that the sweetness threshold value of lysozyme was not changed by guanidination, whereas it was increased markedly by acetylation and phosphopyridoxylation. To confirm the importance of the basicity in the lysine residues in detail, purification of acetylated (Ac-) and phosphopyridoxylated (PLP-) lysozymes using SP-ion exchange column chromatography was performed. The threshold values were not changed by modification with fewer than two residues (approximately 7 microM), whereas the threshold values significantly increased to 15 and 34 microM when tetra-Ac and tri-PLP, respectively. Furthermore, sweetness was not detected at 30 microM (hexa-, penta-Ac and tetra-PLP). It should be noted that removal of the negative charges of the phosphate groups in the tri-PLP lysozyme by acid phosphatase resulted in the recovery of sweetness (6.4 microM), indicating that basicity at the position of the lysine residues is responsible for lysozyme sweetness and that strict charge complementarities might be required for interaction to its putative receptor.  相似文献   

9.
Procedures for chemical modification of bovine pancreatic trypsin inhibitor (BPTI) to allow site-specific coupling of immunogenic peptides are reported. Each of the modified proteins has a single free amino group; the other amino groups of lysine or the amino terminus are blocked by acetylation or guanidination. Two of the derivatives were prepared by protecting Lys-15 by complexation with trypsin or chymotrypsin during acetylation with N-hydroxysuccinimide acetate or guanidination with 3,5-dimethylpyrazole-1-carboxamidine nitrate. A third derivative with a free amino group at the amino terminus was prepared by guanidination of the 4 lysine residues with o-methylisourea. The purity and structural integrity of the modified proteins was checked by NMR spectroscopy. Cysteine-containing peptides can be coupled to the single free amino group using several heterobifunctional linking reagents. N-Succinimidyl 3-(2-pyridyldithio)propionate is the most satisfactory coupling reagent for NMR studies because of its high specificity. Two-dimensional NMR spectroscopy shows that the conformation of the modified proteins is almost identical with that of native BPTI. The BPTI derivatives are suitable for use as models for NMR investigations of the conformation of immunogenic peptides conjugated to a carrier protein.  相似文献   

10.
In proteomic studies, assigning protein identity from organisms whose genomes are yet to be completely sequenced remains a challenging task. For these organisms, protein identification is typically based on cross species matching of amino acid sequence obtained from collision induced dissociation (CID) of peptides using mass spectrometry. The most direct approach of de novo sequencing is slow and often difficult, due to the complexity of the resultant CID spectra. For MALDI-MS, this problem has been addressed by using chemical derivatisation to direct peptide fragmentation, thereby simplifying CID spectra and facilitating de novo interpretation. In this study, milk whey proteins from the tammar wallaby (Macropus eugenii) were used to evaluate three chemical derivatisation methods compatible with MALDI MS/MS. These methods included (i) guanidination and sulfonation using chemically-assisted fragmentation (CAF), (ii) guanidination and sulfonation using 4-sulfophenyl isothiocyanate (SPITC) and (iii) derivatising the epsilon-amino group of lysine residues with Lys Tag 4H. Derivatisation with CAF and SPITC resulted in more protein identification than Lys Tag 4H. Sulfonation using SPITC was the preferred method due to the low cost per experiment, the reactivity with both lysine and arginine terminated peptides and the resultant simplified MS/MS spectra.*Australian Peptide Conference Issue.**This project was funded by an ARC Linkage grant to Deane supported by TGR Biosciences and facilitated by access to the Australian Proteome Analysis Facility established under the Australian Government’s Major National Research Facilities program.  相似文献   

11.
MS2 phage RNA-directed synthesis of an N-terminal polypeptide of the phage coat protein on Escherichia coli 70 S ribosomes was initiated in a cell-free system with the N-dinitrophenyl derivative of methionyl-tRNAFMet) and performed in the absence of tyrosine, lysine, cysteine and methionine. As a result, the translating ribosomes carried peptides up to 42 amino acid residues in length with the dinitrophenyl hapten at the N-ends. Using the immune electron microscopy technique the positions of the nascent peptide N-ends on the 70 S ribosomes have been visualized. It has been found that (i) the N-ends of nascent peptides of these lengths are accessible to antibodies, (ii) the exit site of a nascent peptide is the pocket between the base of the central protuberance and the L1 ridge on the 50 S subunit, i.e. presumably its peptidyl transferase center, and (iii) the further pathway of a nascent peptide seems to proceed along the groove on the external surface of the 50 S subunit.  相似文献   

12.
Solvent accessibility can be used to evaluate protein structural models, identify binding sites, and characterize protein conformational changes. The differential modification of amino acids at specific sites enables the accessible surface residues to be identified by mass spectrometry. Tryptophan residues within proteins can be differentially labeled with halocompounds by a photochemical reaction. In this study, tryptophan residues of carbonic anhydrase are reacted with chloroform, 2,2,2-trichloroethanol (TCE), 2,2,2-trichloroacetate (TCA), or 3-bromo-1-propanol (BP) under UV irradiation at 280 nm. The light-driven reactions with chloroform, TCE, TCA, and BP attach a formyl, hydroxyethanone, carboxylic acid, and propanol group, respectively, onto the indole ring of tryptophan. Trypsin and chymotrypsin digests of the modified carbonic anhydrase are used to map accessible tryptophan residues using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Tryptophan reactivity is determined by identifying peptides with tryptophan residues modified with the appropriate label. The reactivity is calculated from the frequency that the modification is identified and a semiquantitative measure of the amount of products formed. Both of these measures of tryptophan reactivity correlate significantly with the accessible surface area of tryptophan residues in carbonic anhydrase determined from the X-ray crystal structure. Therefore the photochemical reaction of halocompounds with tryptophan residues in carbonic anhydrase indicates the degree of solvent accessibility of these residues.  相似文献   

13.
Recent x-ray crystallographic studies of the acetylcholine-binding protein (AChBP) suggest that loop C, found at the circumference of the pentameric molecule, shows distinctive conformational changes upon antagonist and agonist occupation. We have employed hydrogen-deuterium exchange mass spectrometry to examine the influence of bound ligands on solvent exposure of AChBP. Quantitative measurements of deuterium incorporation are possible for approximately 56% of the Lymnaea AChBP sequence, covering primarily the outer surface of AChBP. In the apoprotein, two regions flanking the ligand occupation site at the subunit interface, loop C (residues 175-193) and loop F (residues 164-171), show greater extents of solvent exchange than other regions of the protein including the N- and C-terminal regions. Occupation by nicotinic agonists, epibatidine and lobeline, and nicotinic antagonists, methyllycaconitine, alpha-bungarotoxin, and alpha-cobratoxin, markedly restricts the exchange of loop C amide protons, influencing both the rates and degrees of exchange. Solvent exposure of loop C and its protection by ligand suggest that in the apoprotein, loop C exhibits rapid fluctuations in an open conformation. Bound agonists restrict solvent exposure through loop closure, whereas the larger antagonists restrict solvent exposure largely through occlusion of solvent. Loop F, found on the complementary subunit surface at the interface, also reveals ligand selective changes in amide proton exchange rates. Agonists do not affect solvent accessibility of loop F, whereas certain antagonists cause subtle accessibility changes. These results reveal dynamic states and fluctuating movements in the vicinity of the binding site for unligated AChBP that can be influenced selectively by ligands.  相似文献   

14.
The surface accessibility of the histidine, tyrosine, and tryptophan residues of Lactobacillus casei dihydrofolate reductase has been determined from 360-MHz 1H photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR experiments. In the absence of ligands, four (or perhaps five) of the seven histidine residues and at least one of the four tryptophan residues are accessible to a flavin dye molecule. One of the five tyrosine residues is also slightly accessible. Of the accessible histidine residues, one becomes inaccessible on the binding of NADP+ and one on the binding of p-aminobenzoyl glutamate. These have been assigned to residues which interact directly with these two ligands. One histidine residue (probably His-22) shows an increase in accessibility on addition of folate or methotrexate to the enzyme . NADP+ complex. In addition, the binding of several ligands, notably trimethoprim, leads to an increase in the accessibility of a tryptophan residue. This is clear evidence for ligand-induced conformational changes in dihydrofolate reductase and allows us to identify some of the residues involved.  相似文献   

15.
In the present study, we examined the pattern of protein modification elicited by alkylperoxyl radicals and alkylperoxides. To this end, we exposed glutamine synthetase (GS) and the peptide melittin to solutions containing 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which is known to decompose in aqueous, aerobic solutions to yield alkyl radicals and alkylperoxides. Under our conditions, pH 7.4, 37 degrees C, the AAPH-dependent formation of alkylhydroperoxide increased linearly with time and led to 40% inactivation of GS in 1 h and to complete inactivation in 4 h. Complete inactivation was associated with the loss of 2 of 16 histidine residues, 6 of 17 tyrosine residues, 5 of 16 methionine residues, and all of the tryptophan residues (2 residues) per subunit. Inactivation of GS was associated also with some protein fragmentation and the formation of some higher molecular weight aggregates. Exposure of GS to AAPH led also to the generation of protein carbonyl derivatives (0.34 mol/mol subunit) and to formation of a significant amount (0.038 mol/mol subunits) of quinoprotein derivatives. To investigate the mechanism of tryptophan modification, the 26-amino-acid peptide, melittin, which contains one tryptophan but no histidine, tyrosine, or methionine residues, was treated with AAPH. N-Formylkynurenine was identified as the major product of tryptophan oxidation in melittin.  相似文献   

16.
L H Schulman  H Pelka    O Leon 《Nucleic acids research》1987,15(24):10523-10530
A protein affinity labeling derivative of E. coli tRNA(fMet) carrying lysine-reactive cross-linking groups has been covalently coupled to monomeric trypsin-modified E. coli methionyl-tRNA synthetase. The cross-linked tRNA-synthetase complex has been isolated by gel filtration, digested with trypsin, and the tRNA-bound peptides separated from the bulk of the free tryptic peptides by anion exchange chromatography. The bound peptides were released from the tRNA by cleavage of the disulfide bond of the cross-linker and purified by reverse-phase high-pressure liquid chromatography, yielding three major peptides. These peptides were found to cochromatograph with three peptides of known sequence previously cross-linked to native methionyl-tRNA synthetase through lysine residues 402, 439 and 465. These results show that identical lysine residues are in close proximity to tRNA(fMet) bound to native dimeric methionyl-tRNA synthetase and to the crystallizable monomeric form of the enzyme, and indicate that cross-linking to the dimeric protein occurs on the occupied subunit of the 1:1 tRNA-synthetase complex.  相似文献   

17.
A proton nuclear magnetic resonance (NMR) study at 100 and 300 MHz of neurotoxin II from the venom of Middle-Asian cobra Naja naja oxiana has been performed in 2H2O and H2O solutions. By means of chemical modification and double resonance all the aromatic residue resonances have been assigned. From the NMR titration curves, pK values of histidine 4 and histidine 31 residues have been determined. For one of the two neighbouring tryptophan residues pH dependence (in the 2-8-pH range) of the chemical shifts of indole protons has been revealed. According to the different sensitivity of the linewidth of indole NH resonances to pH in H2O solution, the accessibility of each of the tryptophan residues has been estimated. Temperature dependence has been observed for the linewidth of the aromatic resonances of the tyrosine 24 residue. Deuterium exchange rates have been measured for amide protons as well as for C(2)H histidine resonances. The NMR data obtained have allowed the conclusions to be made that the two histidine residues and one of the tryptophan residues should be localized on the surface of the protein globule, that arginine residues should be present in the environment of histidine 4, that histidine 31 and the buried tryptophan are possibly localized in close spatial proximity and that the side chain of tyrosine 24 is buried within the protein globule.  相似文献   

18.
1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8-10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5-5.0, the subunit reassociates to oligomer in the pH range 3.1-4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with cyclohexanedione.  相似文献   

19.
Acetamidination of pig heart lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with ethyl acetimidate resulted in an increase of thermostability, and covalent bridge formation between pairs of lysine residues is observed. Guanidination with O-methylisourea of the enzyme also increases the thermostability, but such a bridge seems not to be formed. Increased thermostability of guanidinated enzyme is considered to be due to the shift of the pK values of the lysine residues from 10.5 to 12.5 after guanidination. Modification experiments with carbodiimide reveals that the enzyme contains 4.6 pairs of neighboring lysine and carboxyl residues per subunit, and amide bonding between 3.2 pairs results in an increase of thermostability. Guanidination of 4.6 Lys/subunit of the enzyme yields an enzyme derivative with considerably increased thermostability. Salt bridge formation between the 4.6 pairs of neighboring carboxyl and guanidinated lysine residues per subunit might make a major contribution to the increased thermostability of the guanidinated enzyme.  相似文献   

20.
Circular-dichroism and fluorescence studies indicate that the 5-dimethylaminonaphthalene-1-sulphonyl and phenylmethanesulphonyl derivatives of subtilisin DY have three-dimensional structure closely similar to that of native enzyme. The single tryptophan residue is largely accessible to the aqueous solvent, and is not directly involved in the enzyme-substrate interactions, since its photochemical modification causes only a partial inhibition of the enzyme activity. It appears very likely that the location of the single tryptophan residue in the three-dimensional structure of subtilisin DY is similar to that of the single tryptophan residue in subtilisin Carlsberg. Fluorescence-quenching experiments further indicate that the 14 tyrosine residues are also largely accessible to the aqueous solvent, and probably interact with hydrated peptide carbonyl groups. The charge environment for tryptophan and tyrosine residues in subtilisin DY, as deduced by quenching experiments with ionic species, is also discussed. In general, subtilisin DY displays strong similarities to subtilisin Carlsberg, as suggested by a comparative analysis of the amino acid composition and fluorescence properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号