首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the construction, characterization, and application of a plasmid-based genetic system that reports the expression of a target promoter by effecting an irreversible, heritable change in a bacterial cell. This system confers strong repression of the reporter gene gfp in the absence of target promoter expression and utilizes the site-specific recombination machinery of bacteriophage P22 to trigger high-level reporter gene expression in the original cell and its progeny after target gene induction. We demonstrate the effectiveness of this genetic system by tailoring it to indicate the availability of arabinose to the biological control agent Enterobacter cloacae JL1157 in culture and in the barley rhizosphere. The presence of bioavailable arabinose triggered the production of P22 excisionase and integrase from the reporter plasmid pAraLHB in JL1157, and this led to excision of the cI repressor gene, which is flanked by att sites, and the subsequent irreversible expression of gfp in the original cell and in its progeny. In culture, nearly 100% of an E. cloacae JL1157(pAraLHB) population expressed gfp after exposure to 6.5 to 65 μM arabinose for 3 h. We used this biosensor to demonstrate that arabinose was released from the seeds of several legumes and grass species during germination and from roots of barley seedlings grown hydroponically or in soil. When introduced into microcosms containing barley, the biosensor permitted the localization of arabinose along the roots. Arabinose was present near the root-seed junction and on the seminal roots but was not detected at the root tips. This recombination-based reporter system should be useful for monitoring bacterial exposure to transient or low levels of specific molecules directly in the environment.  相似文献   

2.
We constructed and characterized a plasmid-based genetic system that reports the expression of a toluene-responsive promoter (PtbuA1) by effecting an irreversible, heritable change in the biosensor cell. Expression of the reporter gene gfp is strongly repressed in the absence of expression from the PtbuA1 promoter, and high level gfp expression in the original cell and its progeny is mediated by the site-specific recombination machinery of bacteriophage P22 to initiate removal of a repressor cassette. The reporter plasmid pTolLHB was functional in two soil saprophytes, Pseudomonas fluorescens A506 and Enterobacter cloacae JL1157, with the efficiency and sensitivity to low toluene concentrations being optimal in P. fluorescens A506. In culture, 80-100% of the A506 (pTolLHB) population expressed gfp following exposure to 0.2 micro m toluene for one to three hours. Compared to the response of A506 containing a plasmid-borne PtbuA1-gfp fusion, the recombination-based biosensor was more sensitive at detecting low toluene and trichloroethylene concentrations. An A506 (pTolLHB) inoculum, which had a background of 2.5% of the cells expressing gfp, was introduced onto barley roots in soil microcosms. If toluene was introduced into the microcosms, after 24 h, 72% of the A506 (pTolLHB) cells recovered from roots expressed gfp, indicating bioavailable toluene to rhizosphere bacteria. When toluene was not introduced, 16.5% of the A506 (pTolLHB) cells recovered from the roots expressed gfp, indicating that natural inducers of the PtbuA1 promoter were present in the barley rhizosphere. When introduced into rhizotrons containing barley plants and toluene vapours, the biosensor allowed localization of the availability of toluene along the seminal roots. In rhizotrons that were not exposed to toluene vapours, the biosensor exhibited high PtbuA1-promoter activity in distinct regions along the seminal roots, indicating spatial heterogeneity plant- or rhizosphere microbial community-derived inducers of the PtbuA1 promoter. This recombination-based toluene biosensor thus was useful in identifying bacterial exposure to transient or low levels of toluene, or related compounds, directly in the environment.  相似文献   

3.
The review summarizes the data on new directions in biosensor technologies based on whole bacterial cells. Biosensors for the monitoring of mono(poly)aromatic hydrocarbons and their chlorinated derivatives, which are constructed with genetically modified bacterial cells bearing a reporter gene fusion, are considered. The operating principle of these biosensors is based on the expression of reporter genes (luc, lux, gfp, rfp) under the control of a promoter and a regulator that specifically respond to a detected compound.  相似文献   

4.
A cereal transformation vector, pN1473, containing the strong constitutive rice actin promoter Act-1 , a multiple cloning site, and the nos terminator, was constructed. Fusion of a plant-optimized gfp gene to Act-1 in pN1473 resulted in the vector pN1473GFP. To assess the suitability of pN1473, and GFP as a reporter system in barley transformation, two barley cultivars (Baronesse and Golden Promise) were transformed by microprojectile bombardment. Transient gfp expression in transformed embryogenic callus material was detectable by fluorescence microscopy less than 12 h after transformation. The presence of the gfp gene in callus and regenerated plantlets was confirmed by PCR amplification and DNA gel-blot analysis.  相似文献   

5.
The bifunctional alpha-amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of alpha-amylases expressed during germination of barley and encoded by the amyl gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5'-flanking region (1033 bp, 1033-asi promoter) and the 3'-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.  相似文献   

6.
Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.  相似文献   

7.
The green fluorescent protein gene ( gfp ) is a widely used reporter in both animals and plants. Fusions between the plastid rrn promoter or the Escherichia coli trc promoter and the gfp coding region have been delivered to chloroplasts using gold or tungsten microprojectiles, and fluorescence from GFP was visible in individual tobacco chloroplasts and in the abnormally large chloroplasts of the arc 6 mutant of Arabidopsis thaliana 2–4 days after bombardment. The fusion of the gfp coding region to the bacterial trc promoter demonstrated that a bacterial promoter is active in chloroplasts in vivo . GFP was also detectable in amyloplasts of potato tubers and in chromoplasts of marigold petals, carrot roots and pepper fruits 4 days after bombardment. This demonstrates that GFP can be used as a reporter for transient gene expression in chloroplasts and in non-photosynthetic plastids in a range of higher plants.  相似文献   

8.
9.
To transform grain sorghum (Sorghum bicolor (L.) Moench) with a visual reporter gene (gfp) and a target gene (tlp), three genotypes (two inbreds, Tx 430 and C401, and a commercial hybrid, Pioneer 8505) were used. We obtained a total of 1011 fertile transgenic plants from 61 independent callus lines, which were produced from 2463 zygotic immature embryos via Agrobacterium-mediated transformation. The reporter gene, gfp, encoding green fluorescent protein (GFP), was used as a visual screening marker, and the target gene, tlp, encoding thaumatin-like protein (TLP), was chosen for enhancing resistance to fungal diseases and drought. Both genes were under the control of the maize ubi 1 promoter in the binary vector pPZP201. A total of 320 plants showing GFP expression, derived from 45 calli, were selected and analyzed by Southern blot analysis. There was a 100% correlation between the GFP expression and the presence of the target gene, tlp, in these plants. Transgenic plants showing strong TLP expression were confirmed by Western blotting with antiserum specific for TLP. The transgene segregated in various ratios among progeny, which was confirmed by examining seedlings showing GFP fluorescence. The progeny also showed different copy numbers of transgenics. This report describes the successful use of GFP screening for efficient production of stably transformed sorghum plants without using antibiotics or herbicides as selection agents.  相似文献   

10.
11.
12.
13.
14.
Our knowledge of the genetics and molecular basis of the pathogenesis associated with Leptospira, in comparison to those of other bacterial species, is very limited. An improved understanding of pathogenic mechanisms requires reliable genetic tools for functional genetic analysis. Here, we report the expression of gfp and mRFP1 genes under the control of constitutive spirochetal promoters in both saprophytic and pathogenic Leptospira strains. We were able to reliably measure the fluorescence of Leptospira by fluorescence microscopy and a fluorometric microplate reader-based assay. We showed that the expression of the gfp gene had no significant effects on growth in vivo and pathogenicity in L. interrogans. We constructed an expression vector for L. biflexa that contains the lacI repressor, an inducible lac promoter, and gfp as the reporter, demonstrating that the lac system is functional in Leptospira. Green fluorescent protein (GFP) expression was induced by the addition of isopropyl-β-d-thiogalactopyranoside (IPTG) in L. biflexa transformants harboring the expression vector. Finally, we showed that GFP can be used as a reporter to assess promoter activity in different environmental conditions. These results may facilitate further advances for studying the genetics of Leptospira spp.  相似文献   

15.
Mucoralean fungi (Zygomycota) are used for many industrial processes and also as important model organisms for investigating basic biological problems. Their genetic analysis is severely hampered by low transformation frequencies, by their strong tendency towards autonomous replication of plasmids instead of stable integration, and by the lack of reliable genetic reporter systems. We constructed plasmids for transforming the model zygomycete Absidia glauca that carry the versatile reporter gene coding for green fluorescent protein (GFP). gfp expression is controlled either by the homologous actin promoter or the promoter for the elongation factor of translation, EF1alpha. These plasmids also confer neomycin resistance and carry one of two genetic elements (rag1, seg1) that improve mitotic stability of the plasmid. The gfp constructs were replicated extrachromosomally and could be recovered from retransformed Escherichia coli cells. gfp expression was monitored by epifluorescence microscopy. The gfp reporter gene plasmids presented here for the model zygomycete A. glauca constitute the first reliable system that allows the monitoring of gene expression in this important group of fungi.  相似文献   

16.
17.
18.
19.
The fast and easy in vivo detection predestines the green fluorescent protein (GFP) for its use as a reporter to quantify promoter activities. We have increased the sensitivity of GFP detection 320-fold compared to the wild-type by constructing gfp+, which contains mutations improving the folding efficiency and the fluorescence yield of GFP+. Twelve expression levels were measured using fusions of the gfp+ and lacZ genes with the tetA promoter in Escherichia coli. The agreement of GFP+ fluorescence with beta-galactosidase activities was excellent, demonstrating that the gfp+ gene can be used to accurately quantify gene expression in vivo. However, expression of the gfp+ gene from the stronger hsp60 promoter revealed that high cellular concentrations of GFP+ caused an inner filter effect reducing the fluorescence by 50%, thus underestimating promoter activity. This effect is probably due to the higher absorbance of cells containing GFP+. Thus promoters with activities differing by about two orders of magnitude can be correctly quantified using the gfp+ gene. Possibilities of using GFP variants beyond this range are discussed.  相似文献   

20.
The arabinose-inducible promoter P(BAD) is subject to all-or-none induction, in which intermediate concentrations of arabinose give rise to subpopulations of cells that are fully induced and uninduced. To construct a host-vector expression system with regulatable control in a homogeneous population of cells, the araE gene of Escherichia coli was cloned into an RSF1010-derived plasmid under control of the isopropyl-beta-D-thiogalactopyranoside-inducible P(tac) and P(taclac) promoters. This gene encodes the low-affinity, high-capacity arabinose transport protein and is controlled natively by an arabinose-inducible promoter. To detect the effect of arabinose-independent araE expression on population homogeneity and cell-specific expression, the gfpuv gene was placed under control of the arabinose-inducible araBAD promoter (P(BAD)) on the pMB1-derived plasmid pBAD24. The transporter and reporter plasmids were transformed into E. coli strains with native arabinose transport systems and strains deficient in one or both of the arabinose transport systems (araE and/or araFGH). The effects of the arabinose concentration and arabinose-independent transport control on population homogeneity were investigated in these strains using flow cytometry. The araE, and araE araFGH mutant strains harboring the transporter and reporter plasmids were uniformly induced across the population at all inducer concentrations, and the level of gene expression in individual cells varied with arabinose concentration. In contrast, the parent strain, which expressed the native araE and araFGH genes and harbored the transporter and reporter plasmids, exhibited all-or-none behavior. This work demonstrates the importance of including a transport gene that is controlled independently of the inducer to achieve regulatable and consistent induction in all cells of the culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号