首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been made on some of the properties of Na,K-ATPase of a nuclear erythrocytes of man and nuclear erythrocytes of the carp Cyprinus carpio. Human erythrocytes yielded the enzymic activity only after their treatment by a detergent Twin-20; under optimal conditions, it amounted to 2.6 mcmole /ml of erythrocytes per 1 h. In carp erythrocytes, Na,K-ATPase activity could be detected without detergent treatment, being 10-fold higher under optimal conditions than that in human erythrocytes. Repetitive washing of carp erythrocytes from the plasma (for more than 3 times), significantly increased their viscosity and resulted in spontaneous hemolysis. Simultaneously , the activity of Na,K-ATPase increased 2-10 times depending on the composition of incubation media. Under these conditions, the pattern of changes in the enzymatic activity, resulting from shifts in Mg2+ and EDTA concentrations, was altered. The presence of latent Na,K-ATPase activity in the erythrocytes in explained by a low permeability of membranes to ATP and ions. Exogeneous ATP cannot be utilized by the enzyme in the intact human erythrocytes, whereas intact carp erythrocytes exhibit significant permeability to the exogeneous substrate. It is suggested that in vivo this fact may be of physiological importance.  相似文献   

2.
Na,K-ATPase activity of a plasma membrane fraction obtained from frog skeletal muscles was increased approximately two-fold by exposing muscles to insulin, whereas the addition of insulin to a membrane preparation suspension has no effect on Na,K-ATPase activity. The effect of insulin on Na,K-ATPase activity of whole muscles was specific to insulin and insulin derivatives that had the ability of receptor-binding and was not inhibited by actinomycin D. Insulin also induced a development of Na,K-ATPase activity in muscles whose Na,K-ATPase activity had been blocked by ouabain-pretreating. Such a insulin action was inhibited by monensin. These observations suggest that insulin stimulates the monensin-sensitive intracellular transport of membrane proteins which should be responsible for the increase in Na/K pumping activity.  相似文献   

3.
The reasons for differences in the Na,K-ATPase activity in rat erythrocyte ghosts obtained by hypoosmotic hemolysis in 10 mM Tris-HCl buffer pH 7.6 in the absence ("Tris-ghosts") and presence ("EDTA-ghosts") were investigated. Structurally different detergents (Triton X-100, Tween-20 and sodium deoxycholate) taken at optimal concentrations increased the enzyme activity in a similar way, i. e., 4-fold in "Tris-ghost" and by 30% in "EDTA-ghosts", the absolute activity of Na,K-ATPase in both preparations being levelled out. In the absence of EDTA, only 50-60% of the maximal enzyme activity could be revealed. Thus, in non-nuclear erythrocyte ghosts the maximal Na,K-ATPase activity can be revealed only upon a combined use of a detergent and chelator. It is concluded that the activating effect of the detergents consisting in the increase of the membrane permeability is realized on the outer surface of the membrane, whereas that of EDTA is localized on its inner surface, which is probably due to the disintegration of the cytoskeleton as a result of attachment of membrane-bound Ca2+.  相似文献   

4.
ATPase and cholinesterase activities in the homogenate of the frog nerve and membrane Na,K-ATPase preparation of the bovine brain were investigated. Preliminary treatment of the nerve and the preparation by acetylcholine solution (10(-6)--10(-7) M) enhanced their Na,K-ATPase activity and reduced their cholinesterase activity. Possible mechanisms of this phenomenon are discussed.  相似文献   

5.
The increase in Na+/K+ transport activity in skeletal muscles exposed to insulin was analysed. Plasma-membrane fractions were prepared from frog (Rana catesbeiana) skeletal muscles, and examination of the Na,K-ATPase (Na+ + K+-dependent ATPase) activity showed that it was insensitive to ouabain. In contrast, plasma-membrane fractions prepared from ouabain-pretreated muscles, by the same procedures, showed extremely low Na,K-ATPase activity. On adding saponin to the membrane suspension, the Na,K-ATPase activity increased, according to the detergent concentration. The maximum activity was about twice the control value, at 0.33 mg of saponin/mg of protein. Thus saponin makes vesicle membranes leaky, allowing ouabain in assay solutions to reach receptors on the inner surface of vesicles. Addition of insulin to saponin-treated membrane suspensions had no effect on the Na,K-ATPase activity, whereas the maximum activity of Na,K-ATPase in whole muscles was stimulated by exposure to insulin. The results show that the stimulation of Na+/K+ transport by insulin is not directly due to insulin binding to receptors on the cell surface, but rather support the view that the increase in the Na,K-ATPase induced by insulin requires an alteration of intracellular events.  相似文献   

6.
The stability of the sodium- and potassium-activated adenosinetriphosphatase (Na,K-ATPase) of the electric eel, Electrophorus electricus, was studied in five detergents in an effort to establish conditions for reconstitution of this membrane protein into defined phospholipids. The Na,K-ATPase activity of purified electric organ membranes as well as the ATPase is stable for at least 1 month of storage at 0 degrees C in the absence of detergents. At low concentrations of detergents, the enzyme is also stable for several days, but irreversible inactivation occurs rapidly as the detergent concentration is further increased. This inactivation begins at well-defined threshold concentrations for each detergent, and these concentrations generally occur in the order of the detergent critical micelle concentrations. Increasing the concentration of the electric organ membranes causes a linear increase in the inactivation threshold concentrations of Lubrol WX, deoxycholate, and cholate. The onset of inactivation evidently occurs when the mole fraction of detergent associated with the membrane lipids reaches a critical value in the narrow range of 0.2-0.4, in contrast to the large differences in the bulk concentrations of these detergents. The eel Na,K-ATPase is more sensitive to detergents than the sheep kidney enzyme.  相似文献   

7.
In the mammalian kidney the fine control of Na+ reabsorption takes place in collecting duct principal cells where basolateral Na,K-ATPase provides the driving force for vectorial Na+ transport. In the cortical collecting duct (CCD), a rise in intracellular Na+ concentration ([Na+]i) was shown to increase Na,K-ATPase activity and the number of ouabain binding sites, but the mechanism responsible for this event has not yet been elucidated. A rise in [Na+]i caused by incubation with the Na+ ionophore nystatin, increased Na,K-ATPase activity and cell surface expression to the same extent in isolated rat CCD. In cultured mouse mpkCCDcl4 collecting duct cells, increasing [Na+]i either by cell membrane permeabilization with amphotericin B or nystatin, or by incubating cells in a K(+)-free medium, also increased Na,K-ATPase cell surface expression. The [Na+]i-dependent increase in Na,K-ATPase cell-surface expression was prevented by PKA inhibitors H89 and PKI. Moreover, the effects of [Na+]i and cAMP were not additive. However, [Na+]i-dependent activation of PKA was not associated with an increase in cellular cAMP but was prevented by inhibiting the proteasome. These findings suggest that Na,K-ATPase may be recruited to the cell membrane following an increase in [Na+]i through cAMP-independent PKA activation that is itself dependent on proteasomal activity.  相似文献   

8.
The effect of desoxycorticosterone (DOC) on Na, K-ATPase activity was studied in vivo and in vitro on microsomal rat brain fractions. An hour after intramuscular administration of DOC a noticeable increase in the enzyme activity was observed. Preincubation of microsomal brain fractions with 5 and 15 mkg/ml of DOC caused a decrease in Na, K-ATPase activity, with the results evident 3-5 minutes after the addition of the hormone into the incubation medium. The idea of a two-phase hormonal effect is suggested. It is likely that desoxycorticosterone effect is realized both by the direct influence, on Na, K-ATPase of the brain plasma membrane and by the influence on the biosynthesis.  相似文献   

9.
Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.  相似文献   

10.
The effects and modes of action of certain lipid second messengers and protein kinase C regulators, such as sphingosine, lysophosphatidylcholine (lyso-PC), and oleic acid, on Na,K-ATPase and sodium pump were examined. Inhibition of purified rat brain synaptosome Na,K-ATPase by these lipid metabolites, unlike that by ouabain, was subject to membrane dilution (i.e. inhibition being counteracted by increasing amounts of membrane lipids). Kinetic analysis, using the purified enzyme, indicated that sphingosine and lyso-PC were likely to interact, directly or indirectly, with Na+-binding sites of Na,K-ATPase located at the intracellular face of plasma membranes, a conclusion also supported by studies on Na,K-ATPase and 22Na uptake using the inside-out vesicles of human erythrocyte membranes. The studies also showed that ouabain (but not sphingosine and lyso-PC) increased the affinity constant (K0.5) for K+, whereas sphingosine and lyso-PC (but not ouabain) increased K0.5 for Na+. Sphingosine and lyso-PC inhibited 86Rb uptake by intact human leukemia HL-60 cells at potencies comparable to those for inhibitions of purified Na,K-ATPase and protein kinase C. It is suggested that Na,K-ATPase (sodium pump) might represent an additional target system, besides protein kinase C, for sphingosine and possibly other lipid second messengers.  相似文献   

11.
Summary The cortical tissue of rat brain was fractionated through zonal centrifugation in a continuous sucrose density gradient, yielding a variety of morphologically distinct membrane fragments derived from nerve-end particles possessing variable levels of activity of Na, K-dependent Mg-sensitive ATPase (Na, K-ATPase) and other enzymes. Upon addition of certain of the zonal fractions, particularly those rich in the ATPase and acetylcholinesterase activities, to one side of planar artificial membranes, formed from mixtures of oxidized cholesterol and alkanes and bathed in a solution containing sodium, potassium, and magnesium ions, direct current membrane resistance fell from one to three orders of magnitude. Subsequent addition of ATP to the same side of the membrane to which the ATPase was added (thecis side) led to the development of net short-circuit current flow and open-circuit potential across the membrane (thecis side being negative with respect to thetrans side). Development of the short-circuit current and open-circuit potential is dependent upon the presence of all the substrates of Na, K-ATPase as well as that of the enzyme itself. The net current flow is inhibited and the open-circuit potential discharged by the addition of ouabain to thetrans side of the membrane, of phospholipase A to thecis side, or of trypsin to either side of the membrane. These observations provide circumstantial evidence for the reconstitution of the active cation pump across the artificial bilayer. Efforts to effect a similar reconstitution across membranes of this and other compositions employing Na, K-ATPase preparations from beef heart, beef brain, cat brain, human red cells, rabbit kidney, and rat brain microsomes failed.Career Development Awardee of the National Institutes of Health, Grant No. GM 10248.  相似文献   

12.
The mechanism of activation of Na, K-ATPase in nerve fibres during rhythmic excitation was studied. 3H-ouabain binding to the nerve was found to be dependent on the frequency of rhythmic excitation. During rhythmic excitation 3H-ouabain binding was increased in all nerves tested. The maximum of 3H-ouabain binding in squid and crab nerves was observed at 10 impulses/s, and in frog nerve at 100 impulses/s. The level of bound glycoside decreased during high-frequency excitation. Rhythmic excitation did not change Na, K-ATPase affinity to ouabain, but it appeared to increase the concentration of ouabain sensitive sites in the nerve membrane. The enhancement of 3H-ouabain binding to nerve during rhythmic excitation is interpreted as arising from transformation of "inactive" forms of the enzyme to "active" ones.  相似文献   

13.
Summary The effect of phospholipase A2 and of related agents on ouabain binding and Na,K-ATPase activity were studied in intact and detergent-treated membrane preparations of rat brain cortex and pig kidney medulla. It was found that phospholipase A2 (PLA2) may distinguish or dissociate ouabain binding complexes I (ATP+Mg+Na) and II (Pi+Mg), stimulating the former and inhibiting the latter. Procedures which break the permeability barriers of vesicular membrane preparations, such as repeated freezing-thawing, sonication or hypoosmotic shock failed to mimic the effect of PLA2, indicating that it was not acting primarily by opening the inside-out oriented vesicles. The detergent digitonin exhibited similar effects on ouabain binding in both ATP+Mg+Na and Pi+Mg media. Other detergents were ineffective.The ability of PLA2 to distinguish between ouabain binding type I and II can be manifested even in SDS-treated, purified preparations of Na,K-ATPase. The number of ATP+Mg+Na-dependent sites is unchanged, while the Pi+Mg-dependent sites are decreased in number in a manner similar to that seen in original membranes. This inhibition is completely lost in the reconstituted Na,K-ATPase system, where the ATP- as well as Pi-oriented ouabain sites are inhibited by PLA2.  相似文献   

14.
15.
Yoon T  Kim M  Lee K 《FEBS letters》2006,580(14):3558-3564
Translationally controlled tumor protein (TCTP) has both extra- and intracellular functions. Our group recently reported that TCTP interacts with Na,K-ATPase and suppresses its activity. Our studies led to the identification of sorting nexin 6 (SNX6) which binds with TCTP as a potential negative regulator of TCTP. SNX6 does not interact directly with any cytoplasmic domains of Na,K-ATPase. However, when overexpressed, it restores the Na,K-ATPase activity suppressed by TCTP. This was confirmed by measurements of purified plasma membrane Na,K-ATPase activity after incubation with recombinant TCTP and SNX6. SNX6 alone has no effect on Na,K-ATPase activity, but activates Na,K-ATPase via inhibition of TCTP. Inhibition of endogenous TCTP by the overexpression of SNX6 or knockdown of TCTP expression by siTCTP increased Na,K-ATPase activity above the basal level. The interaction between SNX6 and TCTP thus appears to regulate Na,K-ATPase activity.  相似文献   

16.
Na, K-ATPase activity of the rat and guinea-pig myocardial sarcolemma and its sensitivity to digoxin (DG) and carbamylcholine (CCh) were investigated during experimental ischemia. Ischemia was induced by the incubation of hearts in the air at 37 degrees C. This 15-, 30- and 45-min treatment led to a decrease in enzymatic activity which was similar in both animal species. Dose-related dependence of DG effect (10(-8)-10(-2) M) on sarcolemmal Na, K-ATPase activity of guinea-pig ischemic hearts did not differ from the control, whereas the rat enzyme sensitivity to glycosides rose with the progress of ischemia. CCh (10(-7)-10(-3) M) produced an inhibition of Na, K-ATPase activity which had reached 40% both in the rat and guinea-pig myocardial preparations. This effect was blocked by atropine (10(-6) M). The magnitude of enzyme responses to CCh declined depending on the duration of ischemia, with it being greater in guinea-pig sarcolemma than in rat membrane. The increased sensitivity of the rat Na, K-ATPase to CCh was also observed.  相似文献   

17.
The activity of SDG, Na, K-ATPase and Mg-ATPase of the grass frog was determined in January, March and May, the number of animals examined being 30-40 in either series of experiments. In May (period of reproduction) the average activity of the above enzymes was higher than in January and March. This was observed both in males and females. A correlation between enzymatic activities of each single organism in March and May significantly increased. The role of these changes in the increase of viability of the organism is discussed.  相似文献   

18.
A procedure was developed for the analytical isolation of brush border and basal lateral plasma membranes of intestinal epithelial cells. Brush border fragments were collected by low speed centrifugation, disrupted in hypertonic sorbitol, and subjected to density gradient centrifugation for separation of plasma membranes from nuclei and core material. Sucrase specific activity in the purified brush border plasma membranes was increased fortyfold with respect to the initial homogenate. Basal lateral membrane were harvested from the low speed supernatant and resolved from other subcellular components by equilibrium density gradient centrifugation. Recovery of Na, K-ATPase activity was 94%, and 61% of the recovered activity was present in a single symmetrical peak. The specific activity of Na, K-ATPase was increased twelvefold, and it was purified with respect to sucrase, succinic dehydrogenase, NADPH-cytochrome c reductase, nonspecific esterase, beta-glucuronidase, DNA, and RNA. The observed purification factors are comparable to results reported for other purification procedures, and the yield of Na, K-ATPase is greater by a factor of two than those reported for other procedures which produce no net increase in the Na, K-ATPase activity. Na, K-ATPase rich membranes are shown to originate from the basal lateral plasma membranes by the patterns of labeling that were produced when either isolated cells or everted gut sacs were incubated with the slowly permeating reagent 35S-p-(diazonium)-benzenesulfonic acid. In the former case subsequently purified Na, K-ATPase rich and sucrase rich membranes are labeled to the same extent, while in the latter there is a tenfold excess of label in the sucrase rich membranes. The plasma membrane fractions were in both cases more heavily labeled than intracellular protein. Alkaline phosphatase and calcium-stimulated ATPase were present at comparable levels on the two aspects of the epithelial cell plasma membrane, and 25% of the acid phosphatase activity was present on the basal lateral membrane, while it was absent from the brush border membrane. Less than 6% of the total Na, K-ATPase was present in brush border membranes.  相似文献   

19.
The distribution pattern of marker enzymes (Na, K-ATPase, acetylcholinesterase) in three fractions of synaptic membranes (SM) of rat brain were studied. The effects of three anticonvulsive agents on Na, K-ATPase from the total fraction of rat brain SM and purified membrane preparation from ox brain were estimated by different methods. Under optimal conditions (Na/K = 5) diphenylhydantoin (DPH) at a concentration of 0,1 mM activates Na, K-ATPase from the total SM fraction only in the absence of ouabain, whereas carbamazepine and pyrroxane taken at the same concentrations have no effect on Na, K-ATPase, irrespective of the type of the enzyme assay. DPH seems to compete with ouabain. Under non-optimal ionic conditions (Na/K = 250) all the anticonvulsive substances studied inhibit Na, K-ATPase of the total SM fraction. The mixture of hydrophobic agents (propylene glycol and ethanol) used to dissolve carbamazepine inhibits Na, K-ATPase from the total SM fraction only under non-optimal conditions. The inhibiting effect of the anticonvulsive substances under study on Na, K-ATPase from the purified membrane preparations is maximal at the concentration of 10(-6) M; at higher concentrations the effect is less pronounced.  相似文献   

20.
The properties of Ca-transporting system in sarcoplasmic reticulum membranes in fast and slow frog muscles as well as some properties of sarcolemma Na, K-ATPase of the same object were investigated. The rate of Ca2+ uptake, Ca-ATPase activity and Ca/ATP ratio for the reticulum of fast muscle demonstrated higher values than those for the reticulum of slow muscle. The rate of Ca2+ accumulation by the fragments of the rectus reticulum and Ca/ATP ratio were found to decrease under the influence of acetylcholine (0.05-5 mM). The transport system of the sartorius reticulum was found to be less sensitive to acetylcholine. The peak activity of Na, K-ATPase in femoral muscles of the frog occurred at 80 mM NaCl and 60 mM KCl, whereas in the rectus abdominal muscle it equalled 100 mM NaCl and 40 mM KCl. Thus, Na, K-ATPase activity in the slow muscle was predominantly higher than that in the mixed (femoral) muscles. If the sarcolemma preparations of the muscles of both types the inhibitory effect of acetylcholine on Na; K-ATPase was registered. The enzyme of slow muscles exhibited higher sensibility to acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号