首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inouye S  Sasaki S 《FEBS letters》2006,580(8):1977-1982
Blue fluorescent protein from the calcium-binding photoprotein aequorin (BFP-aq) is a complex of Ca2+ -bound apoaequorin and coelenteramide, and shows luminescence activity like a luciferase, catalyzing the oxidation of coelenterazine with molecular oxygen. To understand the catalytic properties of BFP-aq, various fluorescent proteins (FP-aq) have been prepared from semi-synthetic aequorin and characterized in comparison with BFP-aq. FP-aq has luciferase activity and could be regenerated into native aequorin by incubation with coelenterazine. The results from substrate specificity studies of FP-aq using various coelenterazine analogues have suggested that the oxidation of coelenterazine by BFP-aq in the luciferase reaction and the regeneration process to aequorin might involve the same catalytic site of BFP-aq.  相似文献   

2.
The photoprotein aequorin isolated from the jellyfish Aequorea emits blue light in the presence of Ca2+ by an intramolecular process that involves chemical transformation of the coelenterazine moiety into coelenteramide and CO2. Because of its high sensitivity to Ca2+, aequorin has widely been used as a Ca2+ indicator in various biological systems. We have replaced the coelenterazine moiety in the protein with several synthetic coelenterazine analogues, providing semi-synthetic Ca2+-sensitive photoproteins. One of the semi-synthetic photoproteins, derived from coelenterazine analogue (II) (with an extra ethano group), showed highly promising properties for the measurement of Ca2+, namely (1) the rise time of luminescence in response to Ca2+ was shortened by approx. 4-fold compared with native aequorin and (2) the luminescence spectrum showed two peaks at 405 nm and 465 nm and the ratio of their peak heights was dependent on Ca2+ concentration in the range of pCa 5-7, thus allowing the determination of [Ca2+] directly from the ratio of two peak intensities. Coelenterazine analogue (I) (with a hydroxy group replaced by an amino group) was also incorporated into apo-aequorin, yielding a Ca2+-sensitive photoprotein, which indicates that an electrostatic interaction between the phenolate group in the coelenterazine moiety and some cationic centre in apo-aequorin is not important in native aequorin, contrary to a previous suggestion.  相似文献   

3.
When aequorin is microinjected into cleavage-stage zebrafish embryos, it is largely used up by ~24 hours. Thus, it is currently not possible to image Ca(2+) signals from later stages of zebrafish development using this approach. We have, therefore, developed protocols to express apoaequorin, i.e., the protein component of aequorin, transiently in zebrafish embryos and then reconstitute intact aequorin in vivo by loading the coelenterazine co-factor into the embryos separately. Two types of apoaequorin mRNA, aeq-mRNA and aeq::EGFP-mRNA, the latter containing the enhanced green fluorescent protein (EGFP) sequence, were in vitro transcribed and when these were microinjected into embryos, they successfully translated apoaequorin and a fusion protein of apoaequorin and EGFP (apoaequorin-EGFP), respectively. We show that aeq::EGFP -mRNA was more toxic to embryos than equivalent amounts of aeq-mRNA. In addition, in an in vitro reconstitution assay, apoaequorin-EGFP produced less luminescence than apoaequorin, after reconstitution with coelenterazine and with the addition of Ca(2+). Furthermore, when imaging intact coelenterazine-loaded embryos that expressed apoaequorin, Ca(2+ )signals from ~2.5 to 48 hpf were observed, with the spatio-temporal pattern of these signals up to 24 hpf, being comparable to that observed with aequorin. This transient aequorin expression approach using aeq-mRNA provides a valuable tool for monitoring Ca(2+ )signaling during the 2448 hpf period of zebrafish development. Thus, it effectively extends the aequorin-based Ca(2+) imaging window by an additional 24 hours.  相似文献   

4.
The small, monomeric Ca2+-binding photoprotein, aequorin, emits blue light by an intramolecular reaction when mixed with Ca2+. The photoprotein is made up of coelenterazine and molecular oxygen, bound noncovalently to apoaequorin (apoprotein). The chemical steps leading to light emission, involving the oxidative degradation of coelenterazine, have been studied extensively, but little is known about the active site and how the molecule catalyzes the oxidation of coelenterazine. The three-dimensional structure of the protein has not been determined and therefore answers to these questions have remained unavailable. The present paper describes a procedure for preparing fairly large amounts of apoaequorin and aequorin for X-ray crystallographic studies. It consists of fusing the apoaequorin cDNA to the signal peptide coding sequence of the outer membrane protein A of Escherichia coli, which is under the control of the lipoprotein promoter. When the cDNA was expressed in E. coli, a large excess of the recombinant protein was produced and released into the culture medium. Purification of the protein was accomplished by acid precipitation and DEAE-cellulose chromatography. The procedure yielded 7.4 mg of recombinant apoaequorin with a purity greater than 95% from 200 ml of culture medium. On regeneration with coelenterazine, the recombinant aequorin was fully active with Ca2+.  相似文献   

5.
Aequorin is a bioluminescent calcium indicator consisting of a 21 kDa protein (apo-aequorin) that is covalently linked to a lipophilic cofactor (coelenterazine). The aequorin gene can be expressed in a variety of cell lines and tissues, allowing non-invasive calcium imaging of specific cell types. In the present paper, we describe the possibilities and limitations of calcium imaging with genetically introduced apo-aequorin during embryonic development. By injecting aequorin into sea urchin, Drosophila and zebrafish eggs, we found that higher aequorin concentrations are needed in smaller eggs. Our results suggest that for measuring resting levels of free cytosolic calcium, one needs aequorin concentrations of at least 40 μM in sea urchin eggs, 2 μM in Drosophila eggs, and only 0.11 μM in zebrafish eggs. A simple assay was used to determine the absolute concentrations of expressed apo-aequorin and the percentage of aequorin formation in vivo. The use of this assay is illustrated by expression of the aequorin gene in Drosophila oocytes. These oocytes form up to 1 μM apo-aequorin. In our hands, only 0.3% of this apo-aequorin combined with coelenterazine entering from the medium to form aequorin, which was not enough for calcium imaging of the oocytes, but did allow in vivo imaging of the ovaries. From these studies, we conclude that coelenterazine entry into the cell is the rate limiting step in aequorin formation. Based on the rate of coelenterazine uptake in Drosophila, we estimate that complete conversion of 1 μM apo-aequorin would take 50 days in zebrafish eggs, 19 days in Drosophila eggs, 7 days in sea urchin eggs or 18 h in a 10 gm tissue culture cell. Our results suggest that work based on genetically introduced apo-aequorin will be most successful when large amounts of small cells can be incubated in coelenterazine. During embryonic development this would involve introducing coelenterazine into the circulatory system of late stage embryos. Calcium imaging in early stage embryos may be best done by injecting aequorin, which circumvents the slow process of coelenterazine entry.  相似文献   

6.
The photoprotein aequorin emits light by an intramolecular reaction in the presence of a trace amount of Ca(2+). Semi-synthetic aequorins, produced by replacing the coelenterazine moiety in aequorin with the analogues of coelenterazine, show widely different sensitivities to Ca(2+). To understand the structural basis of the Ca(2+)-sensitivity, we determined the crystal structures of four semi-synthetic aequorins (cp-, i-, br- and n-aequorins) at resolutions of 1.6-1.8 A. In general, the protein structures of these semi-synthetic aequorins are almost identical to native aequorin. Of the four EF-hand domains in the molecule, EF-hand II does not bind Ca(2+), and the loop of EF-hand IV is clearly deformed. It is most likely that the binding of Ca(2+) with EF-hands I and III triggers luminescence. Although little difference was found in the overall structures of aequorins investigated, some significant differences were found in the interactions between the substituents of coelenterazine moiety and the amino acid residues in the binding pocket. The coelenterazine moieties in i-, br-, and n-aequorins have bulky 2-substitutions, which can interfere with the conformational changes of protein structure that follow the binding of Ca(2+) to aequorin. In cp-aequorin, the cyclopentylmethyl group that substitutes for the original 8-benzyl group does not interact hydrophobically with the protein part, giving the coelenterazine moiety more conformational freedom to promote the light-emitting reaction. The differences of various semi-synthetic aequorins in Ca(2+)-sensitivity and reaction rate are explained by the capability of the involved groups and structures to undergo conformational changes in response to the Ca(2+)-binding.  相似文献   

7.
Murine monoclonal IgG1 antibodies (MAb), designated Aq-11 and Aq-12, were prepared against the photoprotein aequorin from jelly fish. Aequorin is a calcium-sensitive photoprotein which consists of a single polypeptide chain, apoaequorin, and a functional chromophore, coelenterazine. Native aequorin consists of two species with molecular masses of 25 and 23.5 kDa. MAb Aq-12 was found by immunoblot analysis to bind specifically to the 25 kDa species, while MAb Aq-11 reacted with the 23.5 kDa protein. Activation of apoaequorin with coelenterazine was associated with a shift of the 23.5 kDa molecule to the 25 kDa species. In contrast, treatment with calcium ions induced a shift back to the 23.5 kDa form. These changes between the active and inactive forms were identified by reactivity with MAbs Aq-11 and Aq-12. The results thus indicate that these MAbs should be useful in monitoring activation of this photoprotein.  相似文献   

8.
The genetic transformation of the higher plant Nicotiana plumbaginifolia to express the protein apoaequorin has recently been used as a method to measure cytosolic free calcium ([Ca2+]i) changes within intact living plants (Knight, M. R., A. K. Campbell, S. M. Smith, and A. J. Trewavas. 1991. Nature (Lond.). 352:524-526; Knight, M. R., S. M. Smith, and A. J. Trewavas. 1992. Proc. Natl. Acad. Sci. USA. 89:4967-4971). After treatment with the luminophore coelenterazine the calcium-activated photoprotein aequorin is formed within the cytosol of the cells of the transformed plants. Aequorin emits blue light in a dose-dependent manner upon binding free calcium (Ca2+). Thus the quantification of light emission from coelenterazine-treated transgenic plant cells provides a direct measurement of [Ca2+]i. In this paper, by using a highly sensitive photon-counting camera connected to a light microscope, we have for the first time imaged changes in [Ca2+]i in response to cold-shock, touch and wounding in different tissues of transgenic Nicotiana plants. Using this approach we have been able to observe tissue-specific [Ca2+]i responses. We also demonstrate how this method can be tailored by the use of different coelenterazine analogues which endow the resultant aequorin (termed semi-synthetic recombinant aeqorin) with different properties. By using h-coelenterazine, which renders the recombinant aequorin reporter more sensitive to Ca2+, we have been able to image relatively small changes in [Ca2+]i in response to touch and wounding: changes not detectable when standard coelenterazine is used. Reconstitution of recombinant aequorin with another coelenterazine analogue (e-coelenterazine) produces a semi-synthetic recombinant aequorin with a bimodal spectrum of luminescence emission. The ratio of luminescence at two wavelengths (421 and 477 nm) provides a simpler method for quantification of [Ca2+]i in vivo than was previously available. This approach has the benefit that no information is needed on the amount of expression, reconstitution or consumption of aequorin which is normally required for calibration with aequorin.  相似文献   

9.
Blue fluorescent protein of aequorin (BFP) is a complex of Ca2+-bound apoaequorin with coelenteramide and is a bifunctional protein, which shows blue fluorescence and the luminescence activity like a luciferase. To reconstitute synthetic BFP (syn-BFP) from apoaequorin and coelenteramide, we established new synthetic route of coelenteramide and prepared highly purified recombinant aequorin using the histidine-tagged secretion system in Escherichia coli cells. As a result, we succeeded in reconstituting syn-BFP quantitatively and the fluorescence and luminescence properties of syn-BFP were identical to that of BFP obtained from aequorin.  相似文献   

10.
The bioluminescence emitted by Aequorea victoria jellyfish is greenish while its single bioluminescent photoprotein aequorin emits blue light. This phenomenon may be explained by a bioluminescence resonance energy transfer (BRET) from aequorin chromophore to green fluorescent protein (GFP) co-localized with it. However, a slight overlapping of the aequorin bioluminescence spectrum with the GFP absorption spectrum and the absence of marked interaction between these proteins in vitro pose a question on the mechanism providing the efficient BRET in A. victoria. Here we report the in vitro study of BRET between homologous Ca(2+)-activated photoproteins, aequorin or obelin (Obelia longissima), as bioluminescence energy donors, and GFP, as an acceptor. The fusions containing donor and acceptor proteins linked by a 19 aa peptide were purified after expressing their genes in Escherichia coli cells. It was shown that the GFP-aequorin fusion has a significantly greater BRET efficiency, compared to the GFP-obelin fusion. Two main factors responsible for the difference in BRET efficiency of these fusions were revealed. First, it is the presence of Ca(2+)-induced interaction between the donor and acceptor in the aequorin-containing fusion and the absence of the interaction in the obelin-containing fusion. Second, it is a red shift of GFP absorption toward better overlapping with aequorin bioluminescence induced by the interaction of aequorin with GFP. Since the connection of the two proteins in vitro mimics their proximity in vivo, Ca(2+)-induced interaction between aequorin and GFP may occur in A. victoria jellyfish providing efficient BRET in this organism.  相似文献   

11.
We have constructed a plasmid suitable for bacterial expression of in vivo-biotinylated photoprotein aequorin. The biotin tag facilitates the isolation of aequorin from crude cell extract and the direct complexation of aequorin with streptavidin for the development of highly sensitive hybridization assays, thereby avoiding the need for chemical crosslinking. The plasmid contains a biotin-acceptor coding sequence fused to an apoaequorin gene. The birA gene, encoding biotin protein ligase (BPL), is inserted downstream of the apoaequorin sequence. BPL biotinylates, posttranslationally, the acceptor domain at a unique position. Functional aequorin is generated by incubating the lysate with coelenterazine and is purified by using a monomeric avidin column that allows elution under nondenaturing conditions. The biotinylated aequorin is complexed with streptavidin and used as a reporter molecule in a hybridization assay. The assay entails immobilization of an oligonucleotide probe on microtiter wells followed by hybridization with a denatured DNA target labeled with biotin through PCR. Streptavidin-biotinylated aequorin is used for quantification of the hybrids. Luminescence is measured in the presence of excess Ca(2+). The analytical range extends from 80 amol of target DNA per well (with a signal-to-background ratio of 2.1) up to 40 fmol per well. The coefficient of variation is about 6%. In vivo-biotinylated aequorin produced from 1 liter of culture is sufficient for 300,000 hybridization assays.  相似文献   

12.
The cDNA for an isotype of clytin, a calcium-binding photoprotein from the luminous jellyfish Clytia gregarium, was identified and named clytin-II. The histidine-tagged apoprotein of clytin-II expressed into the periplasmic space of Escherichia coli cells was isolated by nickel chelate affinity chromatography. Recombinant clytin-II regenerated from apoprotein by incubation with coelenterazine was purified. The yield of purified clytin-II was 13 mg from 2 l of cultured cells with purity >95%. The luminescence properties of clytin-II were characterized by comparison with clytin-I and aequorin, and semi-synthetic clytin-II was also prepared. The initial luminescence intensity of clytin-II triggered by Ca(2+) was 4.5 times higher than that of clytin-I and aequorin, but the luminescence capacity was close to clytin-I and aequorin. Thus, clytin-II is a useful protein, showing high sensitivity in the signal-to-noise ratio of luminescence intensity.  相似文献   

13.
Aequorin is one of several photoproteins that emits visible light upon binding to calcium ions. It has been widely used as a Ca(2+)-indicator and as an alternative highly sensitive bioluminescent label in binding assays. The apoprotein of aequorin binds an imidazopyrazine compound (coelenterazine) and molecular oxygen to form a stable photoprotein complex. Upon addition of calcium, the photoprotein undergoes a conformational change leading to the oxidation of the chromophore with the release of CO(2) and blue light. To gain more information of structure-function relationships within the photoprotein that will aid in the design of mutants suitable for site-specific conjugation and immobilization, polymerase chain reaction (PCR)-based site-directed mutagenesis was employed to produce five different aequorin mutants. The five mutants included a cysteine-free mutant and four other mutants with single cysteine residues at selected positions within the protein. The aequorin mutants exhibited different bioluminescence emission characteristics with two mutants showing a decrease in relative light production in comparison to the cysteine-free mutant. Additionally, circular dichroism (CD) spectra revealed that the single amino acid substitutions made for two of the aequorin mutants did alter their secondary structures.  相似文献   

14.
Renilla luciferase (RLUC) is a versatile tool for gene expression assays and in vivo biosensor applications, but its catalytic mechanism remains to be elucidated. RLUC is evolutionarily related to the alpha/beta hydrolase family. Its closest known homologs are bacterial dehalogenases, raising the question of how a protein with a hydrolase fold can function as a decarboxylating oxygenase. Molecular docking simulations with the coelenterazine substrate against an RLUC homology model as well as a recently determined RLUC crystal structure were used to build hypotheses to identify functionally important residues, which were subsequently tested by site-directed mutagenesis, heterologous expression, and bioluminescence emission spectroscopy. The data highlighted two triads of residues that are critical for catalysis. The putative catalytic triad residues D120, E144, and H285 bear only limited resemblance to those found in the active site of aequorin, a coelenterazine-utilizing photoprotein, suggesting that the reaction scheme employed by RLUC differs substantially from the one established for aequorin. The role of H285 in catalysis was further supported by inhibition using diethylpyrocarbonate. Multiple substitutions of N53, W121, and P220--three other residues implicated in product binding in the homologous dehalogenase Sphingomonas LinB--also supported their involvement in catalysis. Together with luminescence spectra, our data lead us to propose that the conserved catalytic triad of RLUC is directly involved in the decarboxylation reaction of coelenterazine to produce bioluminescence, while the other active-site residues are used for binding of the substrate.  相似文献   

15.
Real-time visualization of calcium (Ca(2+)) dynamics in the whole animal will enable important advances in understanding the complexities of cellular function. The genetically encoded bioluminescent Ca(2+) reporter green fluorescent protein-aequorin (GA) allows noninvasive detection of intracellular Ca(2+) signaling in freely moving mice. However, the emission spectrum of GA is not optimal for detection of activity from deep tissues in the whole animal. To overcome this limitation, two new reporter genes were constructed by fusing the yellow fluorescent protein (Venus) and the monomeric red fluorescent protein (mRFP1) to aequorin. Transfer of aequorin chemiluminescence energy to Venus (VA) is highly efficient and produces a 58 nm red shift in the peak emission spectrum of aequorin. This substantially improves photon transmission through tissue, such as the skin and thoracic cage. Although the Ca(2+)-induced bioluminescence spectrum of mRFP1-aequorin (RA) is similar to that of aequorin, there is also a small peak above 600 nm corresponding to the peak emission of mRFP1. Small amounts of energy transfer between aequorin and mRFP1 yield an emission spectrum with the highest percentage of total light above 600 nm compared with GA and VA. Accordingly, RA is also detected with higher sensitivity from brain areas. VA and RA will therefore improve optical access to Ca(2+) signaling events in deeper tissues, such as the heart and brain, and offer insight for engineering new hybrid molecules.  相似文献   

16.
Properties of a recombinant aequorin were investigated in comparison with those of natural aequorin. In chromatographic behaviour the recombinant aequorin did not match any of ten isoaequorins tested, although it was very similar to aequorin J. Its sensitivity to Ca2+ was found to be higher than that of any isoaequorin except aequorin D. The recombinant aequorin exhibited no toxicity when tested in various kinds of cells, even where samples of natural aequorin had been found to be toxic. Properties of four recombinant semi-synthetic aequorins (fch-, hcp-, e- and n-types), prepared from the recombinant apo-aequorin and synthetic analogues of coelenterazine, were approximately parallel with those of corresponding semi-synthetic aequorins prepared from natural apo-aequorin. Both recombinant e-aequorin and natural e-aequorin J luminesced with high values of the luminescence intensity ratio I400/I465, although the ratios were not pCa-dependent. The recombinant aequorin and recombinant semi-synthetic aequorins are highly suited for monitoring cellular Ca2+.  相似文献   

17.
Recombinant apoaequorin expressed in the periplasmic space of Escherichia coli cells was regenerated into aequorin and extracted from the cells, simultaneously, using a buffer that contained coelenterazine. Due to the mild extraction conditions, the impurities in the extract were minimal. Thus, the purification of extracted aequorin could be accomplished in only two steps, anion-exchange chromatography and hydrophobic interaction chromatography, simply by adsorption and elution in both steps. The purified recombinant aequorin was pure, based on various data, including HPLC analysis and light-emitting activity. The yield of purified aequorin was 25-35 mg from 600 ml of culture, which was over 75% of the total amount of apoaequorin expressed in E. coli cells.  相似文献   

18.
Aequorin, a Ca(II)-sensitive bioluminescent protein from jellyfish, emits light at 469 nm from an excited state of a substituted pyrazine (oxyluciferin) which results from the oxidation of a chromophore molecule that is noncovalently bound to the protein. The chromophore is oxidized when Ca(II) or other activating metal ions are bound by aequorin. In the absence of Ca(II), spontaneous emission of light, referred to as Ca(II)-independent light emission, occurs at a rate less than 10(-6) of that for Ca(II)-induced emission. Proton nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence were used to study structural changes of aequorin accompanying Ca(II)-independent light emission. Time course studies by 1H NMR and CD demonstrate that as a result of Ca(II)-independent light emission, aequorin progressively changes from a rigid, fully active form showing little segmental mobility to a practically unfolded, discharged (i.e., inactive) form in which a number of amino acid residues are significantly mobile. This slow discharged protein (SDP) is distinct in nature and conformation from aequorin which has been discharged by Ca(II), i.e., the blue fluorescent protein. The rate of Ca(II)-independent discharge of aequorin is substantially reduced in the presence of excess Mg(II); the time constant for inactivation at 5 degrees C is 30 days with no Mg(II) present and 70 days with Mg(II) present. The NMR spectra are nearly identical at a given stage of inactivation whether or not Mg(II) is present. Oxyluciferin remains bound to SDP. If it is removed, however, by column chromatography, the resulting apo-SDP partially refolds, and the segmental mobility acquired in the formation of SDP is significantly attenuated particularly for some of the aromatic amino acid residues.  相似文献   

19.
Measuring [Ca2+] in the endoplasmic reticulum with aequorin   总被引:1,自引:0,他引:1  
Alvarez J  Montero M 《Cell calcium》2002,32(5-6):251-260
The photoprotein aequorin was the first probe used to measure specifically the [Ca(2+)] inside the lumen of the endoplasmic reticulum ([Ca(2+)](ER)) of intact cells and it provides values for the steady-state [Ca(2+)](ER), around 500 microM, that closely match those obtained now by other procedures. Aequorin-based methods to measure [Ca(2+)](ER) offer several advantages: (i) targeting of the probe is extremely precise; (ii) the use of low Ca(2+)-affinity aequorin allows covering a large dynamic range of [Ca(2+)], from 10(-5) to 10(-3)M; (iii) aequorin is nearly insensitive to changes in Mg(2+) or pH, has a high signal-to-noise ratio and calibration of the results in [Ca(2+)] is made straightforward using a simple algorithm; and (iv) the equipment required for luminescence measurements in cell populations is simple and low-cost. On the negative side, this technique has also some disadvantages: (i) the relatively low amount of emitted light makes difficult performing single-cell imaging studies; (ii) reconstitution of aequorin with coelenterazine requires previous complete depletion of Ca(2+) of the ER for 1-2h, a maneuver that may result in deleterious effects in some cells; (iii) because of the high rate of aequorin consumption at steady-state [Ca(2+)](ER), only relatively brief experiments can be performed; and (iv) expression of ER-targeted aequorin requires previous transfection or infection to introduce the appropriate DNA construct, or alternatively the use of stable cell clones. Choosing aequorin or other techniques to measure [Ca(2+)](ER) will depend of the correct balance between these properties in a particular problem.  相似文献   

20.
The Ca2+-sensitive photoprotein aequorin and the Ca2+-dependent fluorescent indicators quin 2 and TnCDANZ have been used to investigate contractile processes in single crustacean muscle fibres. The investigations with quin 2 indicate that the free Ca2+ rises to a maximum value before peak force as with aequorin light (approximately 200 msec delay at 12 degrees C) and subsequently decays more slowly, unlike the majority of the aequorin signal, although an aequorin 'tail' signal remains. The resting quin 2 fluorescence from the cell suggests an upper limit of 348 nM for the resting calcium concentration. Experiments with TnCDANZ indicate that this fluorescence response rises rapidly but then the rate of rise slows to reach a maximum value at a time when peak force is achieved and then the fluorescence signal decays more slowly than force. The latter result implies that Ca2+ is attached to the Ca2+-specific sites of TnC when externally recorded force is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号