首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The previously reported existence of plasmid-like (pl) DNA in senescent mycelia of Podospora anserina was confirmed using new methodology. Detailed analysis of bulk DNA has further shown a possible relationship between pl DNA and mt DNA.According to biophysical and electron microscopic experiments the pl DNA was found to consist of oligomeres having a basic unit with a contour length of 0.75 m corresponding to 2.4 kb. To overcome the handicap that pl DNA is only produced in rather small amounts in the aging mycelia, this DNA was cloned in E. coli after insertion into a bacterial plasmid vector, pBR 322. It was possible to isolate a stable hybrid plasmid consisting of the vector and only one integrated monomere of pl DNA. The composition of this hybrid plasmid was confirmed by restriction endonuclease analysis and heteroduplex formation. A restriction map of the pl DNA is presented and its insertion site onto pBR 322 indicated.  相似文献   

2.
Summary The formation of heteroduplexes from linear duplex DNA, where one molecule possesses a DNA doublestrand break, was assayed by agarose gel electrophoresis. Using unlabeled whole-length linear duplex DNA and 3H-labeled half-length linear duplex DNA (obtained from plasmid pACYC184), the appearance of 3H-labeled DNA that migrated as whole-length linear DNA was taken as evidence for formation of heteroduplex DNA. When the DNA mixtures were incubated with RecA, RecBCD, or Ssb proteins, or any double or triple combination of these proteins under a variety of reaction conditions, no heteroduplex DNA was detected. However, heteroduplex DNA was detected when the DNA mixtures were first incubated briefly with the RecBCD and Ssb proteins under reaction conditions that allow unwinding to proceed, and then the MgCl2 concentration was raised such that renaturation could proceed. The inclusion of the RecBCD and Ssb proteins was sufficient to catalyze the slow formation of heteroduplex DNA, but the presence of RecA protein greatly increased the kinetics. The roles of the RecBCD, Ssb and RecA proteins in heteroduplex formation in vitro are discussed.  相似文献   

3.
K J Hillers  F W Stahl 《Genetics》1999,153(2):555-572
In Saccharomyces cerevisiae, some gene loci manifest gradients in the frequency of aberrant segregation in meiosis, with the high end of each gradient corresponding to a hotspot for DNA double-strand breaks (DSBs). The slope of a gradient is reduced when mismatch repair functions fail to act upon heteroduplex DNA-aberrant segregation frequencies at the low end of the gradient are higher in the absence of mismatch repair. Two models for the role of mismatch repair functions in the generation of meiotic "conversion gradients" have been proposed. The heteroduplex rejection model suggests that recognition of mismatches by mismatch repair enzymes limits hybrid DNA flanking the site of a DSB. The restoration-conversion model proposes that mismatch repair does not affect the length of hybrid DNA, but instead increasingly favors restoration of Mendelian segregation over full conversion with increasing distance from the DSB site. In our experiment designed to distinguish between these two models, data for one subset of well repairable mismatches in the HIS4 gene failed to show restoration-type repair but did indicate reduction in the length of hybrid DNA, supporting the heteroduplex rejection model. However, another subset of data manifested restoration-type repair, indicating a relationship between Holliday junction resolution and mismatch repair. We also present evidence for the infrequent formation of symmetric hybrid DNA during meiotic DSB repair.  相似文献   

4.
We have established an in vitro reaction in which heteroduplex DNA formation is dependent on the concerted actions of recA and recBCD proteins, the major components of the recBCD pathway of genetic recombination in vivo. We find that heteroduplex DNA formation requires three distinct enzymatic functions: first, the helicase activity of recBCD enzyme initiates heteroduplex DNA formation by unwinding the linear double-stranded DNA molecule to transiently form single-stranded DNA (ssDNA); second, recA protein traps this ssDNA before it reanneals; third, recA protein catalyzes the pairing of this ssDNA molecule with another homologous ssDNA molecule, followed by the renaturation of these molecules to form heteroduplex DNA. The first two functions should be important to all in vitro reactions involving recA and recBCD proteins, whereas the third will be specific to the DNA substrates used. The rate-limiting step of heteroduplex DNA formation is the trapping by recA protein of the ssDNA produced by recBCD enzyme. A model for this reaction is described.  相似文献   

5.
We describe a general physical method for detecting the heteroduplex DNA that is formed as an intermediate in meiotic recombination in the yeast Saccharomyces cerevisiae. We use this method to study the kinetic relationship between the formation of heteroduplex DNA and other meiotic events. We show that strains with the rad50, but not the rad52, mutation are defective in heteroduplex formation. We also demonstrate that, although cruciform structures can be formed in vivo as a consequence of heteroduplex formation between DNA strands that contain different palindromic insertions, small palindromic sequences in homoduplex DNA are rarely extruded into the cruciform conformation.  相似文献   

6.
Poxviruses are large DNA viruses that replicate in the cytoplasm of infected cells and recombine at high frequencies. Calcium phosphate precipitates were used to cotransfect Shope fibroma virus-infected cells with different DNA substrates and the recombinant products assayed by genetic and biochemical methods. We have shown previously that bacteriophage lambda DNAs can be used as substrates in these experiments and recombinants assayed on Escherichia coli following DNA recovery and in vitro packaging. Using this assay it was observed that 2-3% of the phage recovered from crosses between point mutants retained heteroduplex at at least one of the mutant sites. The reliability of this genetic analysis was confirmed using DNA substrates that permitted the direct detection of heteroduplex molecules by denaturant gel electrophoresis and Southern blotting. It was further noted that heteroduplex formation coincided with the onset of both replication and recombination suggesting that poxviruses, like certain bacteriophage, make no clear biochemical distinction between these three processes. The fraction of heteroduplex molecules peaked about 12-hr postinfection then declined later in the infection. This decline was probably due to DNA replication rather than mismatch repair because, while high levels of induced DNA polymerase persisted beyond the time of maximal heteroduplex recovery, we were unable to detect any type of mismatch repair activity in cytoplasmic extracts. These results suggest that, although heteroduplex molecules are formed during the progress of poxviral infection, gene conversion through mismatch repair probably does not produce most of the recombinants. The significance of these observations are discussed considering some of the unique properties of poxviral biology.  相似文献   

7.
S Jakovcic  J Casey  M Rabinowitz 《Biochemistry》1975,14(10):2043-2050
The sequence divergence of mitochondrial DNAs (mtDNA) from rat, mouse, guinea pig, monkey, and chicken has been examined by DNA-DNA hybridization. mtDNAs, isolated as closed circular molecules by propidium iodide-CsCl centrifugation, were labeled in vitro by use of Escherichia coli DNA polymerase I, and renatured (Tm-35 degrees) in the presence of a 2500-fold excess of heterologous mtDNA. Single-stranded and duples DNA were separated by hydroxylapatite chromatography. The thermal stability of heteroduplexes was compared to the homoduplex by thermal elution chromatography on hydroxylapatite columns. Heteroduplex fromation between the tritiated myDNAs and a 2500-fole excess of rar mtDNA were 70, 59, 37, and 22%, respectively, for mouse, guinea pig, monkey, and chicken. Similar results were obrained in reciprocal hybridizations where one of the other mtDNAs was present in excess. Considerable mismatching of sequences in all the heterohybrids was indicated by a 18-24 degrees depression in the te50 of the heteroduplexes compared with the homoduplex. There was no apparent change in heteroduplex formation when the concentration ratio of driving DNA in excess to [3H]mtDNA was varied between 1250 and 7500. Furthermore, a second renaturation with excess driving DNA after completion of the first reaction resulted in no detectable augmenting of heteroduplex formation. Similar sequences appear to be conserved preferentially in different organisms, since the presence of two of fouf different heterologous mtDNAs in excess resulted in only moderate and nonadditive increases in heteroduplex formation. Evolutionary divergence of mtDNA sequences appears to have occurred at rates similar to that for unique sequences nuclear DNA.  相似文献   

8.
The formation of heteroduplex DNA features prominently in all models for homologous recombination. A central intermediate in the current double-strand break repair model contains two Holliday junctions flanking a region of heteroduplex DNA. Studies of yeast meiosis have identified such intermediates but failed to detect associated heteroduplex DNA. We show here that these intermediates contain heteroduplex DNA, providing an important validation of the double-strand break repair model. However, we also detect intermediates where both Holliday junctions are to one side of the initiating DSB site, while the intervening region shows no evidence of heteroduplex DNA. Such structures are not easily accommodated by the canonical version of the double-strand break repair model.  相似文献   

9.
Interaction of linear homologous DNA duplexes by formation of Holliday junctions was revealed by electrophoresis and confirmed by electron microscopy. The phenomenon was demonstrated using a model of five purified PCR products of different size and sequence. The double-stranded structure of interacting DNA fragments was confirmed using several consecutive purifications, S1-nuclease analysis, and electron microscopy. Formation of Holliday junctions depends on DNA concentration. A thermodynamic equilibrium between duplexes and Holliday junctions was shown. We propose that homologous duplex interaction is initiated by nucleation of several dissociated terminal base pairs of two fragments. This process is followed by branch migration creating a population of Holliday junctions with the branch point at different sites. Finally, Holliday junctions are resolved via branch migration to new or previously existing duplexes. The phenomenon is a new property of DNA. This type of DNA-DNA interaction may contribute to the process of Holliday junction formation in vivo controlled by DNA conformation and DNA-protein interactions. It is of practical significance for optimization of different PCR-based methods of gene analysis, especially those involving heteroduplex formation.  相似文献   

10.
Factors affecting PCR-mediated recombination   总被引:2,自引:0,他引:2  
In the past decade, polymerase chain reaction (PCR) has become an important tool for the identification of previously unknown microorganisms and the analysis of environmental microbial diversity. Several studies published during recent years, however, have demonstrated that products obtained after PCR using Taq or Vent DNA polymerases will contain hybrid molecules when several homologous target sequences such as multigene families, alleles, or RNA viruses are co-amplified. In this report, we examined the recombination frequency and the extent of template switching during PCR using Taq, Pfu and RTth/Vent DNA polymerases. As a test system we constructed a series of plasmids carrying between one and three frame shift mutations in the gene coding for the protease subtilisin or deletions of approximately 100 bp in the lacZ alpha. Highest recombination frequencies were observed when these mutants were co-amplified with Taq followed by RTth/Vent DNA polymerases. Pfu DNA polymerase displayed no discernable recombination activity under normal PCR conditions. Data also suggest that in vivo repair of heteroduplex DNA molecules in Escherichia coli by a RecA-independent mechanism, perhaps the mismatch repair, results in the formation of chimeric molecules. Using Bacillus subtilis as the host, however, can significantly diminish non-PCR RecA-independent in vivo recombination, owing to the fact that transforming DNA molecules enter B. subtilis as single strands. Combined, these results suggest that using Pfu DNA polymerase for amplification and B. subtilis as the host for transformation may significantly reduce chimera formation.  相似文献   

11.
12.
Reannealed hybrid molecules of wild-type bacteriophage lambda DNA were prepared in aqueous solutions of formamide at a variety of NaCl concentrations at both room temperature ( 22 degrees C) and 37 degrees C. Treatment of the hybrid DNA molecules with the single-strand-specific nuclease S1 from Aspergillus oryzae followed by alkaline sucrose gradient sedimentation was used to monitor the extent and fidelity of hybridization. The optimal renaturation conditions at room temperature were found to be: 50% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Optimal conditions at 37 degrees C were: 32% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Under these conditions approximately 85-90% of the input single-stranded DNA (molecular weight 1.5 X 10(7)) was rendered S1-nuclease-resistant within 8 h at room temperature and 5 h at 37 degrees C. Neither Mg2+ nor spermidine appeared to have an effect on either the extent or fidelity of duplex formation. Experiments performed with excess enzyme and with lambda/lambda imm 434 heteroduplex hybrids suggested that the hybrid that the hybrid DNA molecules formed under optimal conditions contained no, or only short (less than 1%), mismatched regions.  相似文献   

13.
The recombination hotspot Chi, 5' G-C-T-G-G-T-G-G 3', stimulates the RecBCD recombination pathway of Escherichia coli. We have determined, with precision greater than previously reported, the distribution of Chi-stimulated exchanges around a Chi site in phage lambda. Crosses of lambda phages with single base-pair mutations surrounding a Chi site were conducted in and analyzed on mismatch correction-impaired hosts to preserve heteroduplex mismatches for analysis. Among phages recombinant for flanking markers, Chi stimulated exchanges most intensely in the intervals immediately adjacent to the Chi site, both to its right and to its left. Stimulation fell off abruptly to the right but gradually to the left (with respect to the orientation of the Chi sequence written above). We have also determined that Chi stimulated the formation of heteroduplex DNA, which frequently had one endpoint to the right of Chi and the other endpoint to the left. These data support a model of Chi-stimulated recombination in which RecBCD enzyme cuts DNA immediately to the right of Chi and unwinds DNA to the left of Chi; segments of unwound single-stranded DNA are sometimes, but not always, degraded before synapsis with homologous DNA.  相似文献   

14.
When recipient Bacillus subtilis carrying chromosomal trimethylpsoralen cross-links were transformed, the donor marker activity decreased with the extent of cross-linking. Additional donor marker activity was lost upon incubation of the reextracted DNA with nuclease S1, particularly at higher levels of cross-linking. Physical analysis of the reextracted DNA showed that the donor DNA was progressively excluded from heteroduplex formation as the frequency of cross-links in the recipient DNA increased. In the donor-recipient complexes still being formed, increasing amounts of donor DNA became susceptible to nuclease S1 digestion under these conditions. These results suggest that resident interstrand cross-links interfere both with initiation of recombination and with the completion of heteroduplex formation.  相似文献   

15.
We are targeting molecules to the RNA/DNA heteroduplex that forms during the enzyme telomerase's catalytic cycle. Telomerase is a potential universal anti-cancer target that we have previously shown can be inhibited by molecules that target this heteroduplex. The aim of this work was to make derivatives of our lead, ethidium, that would allow its straightforward incorporation into molecules in both solid and solution phase. The heteroduplex targeting intercalator will act as a scaffold to allow the incorporation of new functionalities that will interact with specific protein surfaces of telomerase, thereby potentially increasing affinity and specificity. In examining multiple new derivatives of ethidium, with literature precedent or novel, we have identified one, a 5-benzylic acid ethidium derivative that is synthesized in three steps as a single isomer, and completely retains the inhibition efficacy of the parent compound. Furthermore, we have demonstrated that it can be effectively incorporated into resin bound amines on the solid phase. As such it represents an ideal monomer for the exploration of telomerase inhibition or for other applications which would benefit from hybrid molecules that can target duplexes.  相似文献   

16.
The utility of restriction endonucleases as a tool in molecular biology is in large part due to the high degree of specificity with which they cleave well-characterized DNA recognition sequences. The specificity of restriction endonucleases is not absolute, yet many commonly used assays of biological phenomena and contemporary molecular biology techniques rely on the premise that restriction enzymes will cleave only perfect cognate recognition sites. In vitro, mispaired heteroduplex DNAs are commonly formed, especially subsequent to polymerase chain reaction amplification. We investigated a panel of restriction endonucleases to determine their ability to cleave mispaired heteroduplex DNA substrates. Two straightforward, non-radioactive assays are used to evaluate mispaired heteroduplex DNA cleavage: a PCR amplification method and an oligonucleotide-based assay. These assays demonstrated that most restriction endonucleases are capable of site-specific double-strand cleavage with heteroduplex mispaired DNA substrates, however, certain mispaired substrates do effectively abrogate cleavage to undetectable levels. These data are consistent with mispaired substrate cleavage previously reported for Eco RI and, importantly, extend our knowledge of mispaired heteroduplex substrate cleavage to 13 additional enzymes.  相似文献   

17.
Formation of a ternary complex between human MutSalpha, MutLalpha, and heteroduplex DNA has been demonstrated by surface plasmon resonance spectroscopy and electrophoretic gel shift methods. Formation of the hMutLalpha.hMutSalpha.heteroduplex complex requires a mismatch and ATP hydrolysis, and depends on DNA chain length. Ternary complex formation was supported by a 200-base pair G-T heteroduplex, a 100-base pair substrate was somewhat less effective, and a 41-base pair heteroduplex was inactive. As judged by surface plasmon resonance spectroscopy, ternary complexes produced with the 200-base pair G-T DNA contained approximately 0.8 mol of hMutLalpha/mol of heteroduplex-bound hMutSalpha. Although the steady-state levels of the hMutLalpha.hMutSalpha. heteroduplex were substantial, this complex was found to turn over, as judged by surface plasmon resonance spectroscopy and electrophoretic gel shift analysis. With the former method, the majority of the complexes dissociated rapidly upon termination of protein flow, and dissociation occurred in the latter case upon challenge with competitor DNA. However, ternary complex dissociation as monitored by gel shift assay was prevented if both ends of the heteroduplex were physically blocked with streptavidin.biotin complexes. This observation suggests that, like hMutSalpha, the hMutLalpha.hMutSalpha complex can migrate along the helix contour to dissociate at DNA ends.  相似文献   

18.
Jensen LE  Jauert PA  Kirkpatrick DT 《Genetics》2005,170(3):1033-1043
During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplex DNA is formed when single-stranded DNAs from two homologs anneal as a consequence of strand invasion. If the two DNA strands differ in sequence, a mismatch will be generated. Mismatches in heteroduplex DNA are recognized and repaired efficiently by meiotic DNA mismatch repair systems. Components of two meiotic systems, mismatch repair (MMR) and large loop repair (LLR), have been identified previously, but the substrate range of these repair systems has never been defined. To determine the substrates for the MMR and LLR repair pathways, we constructed insertion mutations at HIS4 that form loops of varying sizes when complexed with wild-type HIS4 sequence during meiotic heteroduplex DNA formation. We compared the frequency of repair during meiosis in wild-type diploids and in diploids lacking components of either MMR or LLR. We find that the LLR pathway does not act on single-stranded DNA loops of <16 nucleotides in length. We also find that the MMR pathway can act on loops up to 17, but not >19, nucleotides in length, indicating that the two pathways overlap slightly in their substrate range during meiosis. Our data reveal differences in mitotic and meiotic MMR and LLR; these may be due to alterations in the functioning of each complex or result from subtle sequence context influences on repair of the various mismatches examined.  相似文献   

19.
A method for the enrichment of heteroduplex DNAs from hybrid DNA mixtures by endonuclease VII is reported. The procedure is based on the ability of a GST-fused cleavage-deficient mutant endonuclease VII (EVII-N62D(GST)) to bind to mismatching nucleotides in heteroduplex DNAs identical to the wild-type enzyme. The GST tag was used for stable immobilisation of the protein to Glutathione Sepharose 4B. This enables the material to withstand the repeated rounds of binding steps required for enrichment of heteroduplex molecules from appropriate samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号