首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
2'-O-methylation of eukaryotic ribosomal RNAs occurs in the cell nucleoli. At least 100 modification sites that are highly conserved among vertebrate rRNAs have been mapped. However, in part because of the insensitivity of current approaches, there are 2'-O-methylated sites that remain unidentified. We have developed an extremely sensitive method for detecting 2'-O-methylated residues that are predicted within a long RNA molecule. Utilizing RNase H cleavage directed by a 2'-O-methyl RNA-DNA chimeric oligonucleotide, this method has allowed identification of two methylated nucleotides, G1448 in Xenopus 18S rRNA and A394 in Xenopus 28S rRNA. The latter (A394 in 28S) had not been detected before. We have confirmed that the methylation at G1448 in 18S is dependent upon Xenopus U25 snoRNA and have demonstrated that the methylation at A394 in 28S requires U26 snoRNA. One advantage of this technique is that it can examine specific rRNA and precursor molecules. We show that about 30% of the 40S pre-rRNA has been methylated at these two sites and their methylation is complete at the stage of 20S (immediate precursor to 18S) and 32S (immediate precursor to 28S). We also show that methylation at these two sites is not essential for rRNA transport from the nucleus to the cytoplasm.  相似文献   

3.
Simple two-dimensional thin-layer chromatography was found to be useful for the separation of sugar methylated dinucleotides in RNA. Of the 16 possible sequences of the type Nm-Np, 15 were separated and all the sequences were determined. In a mouse hepatoma, MH 134, the levels of the sugar methylation in the 18S and 28S RNA molecules were 17-18 and 11-12 per 1000 nucleotides, respectively. Thus, 18s RNA contained approximately 35 2'-O-methylated dinucleotides and 28S RNA approximately 60 2'-O-methylated dinucleotides. The pattern of distribution was also distinct between these two molecules. Two 2'-O-methylated trinucleotides were identified in the 28S RNA with the sequences Um-Gm-Up and Um-Gm-psip. A unique 2'-O-methylated tetranucleotide was present also in the 28S RNA, the sequence of which was Am-Gm-Cm-Ap. The 5'-terminal nucleotides of both 18S and 28S RNA were obtained as nucleoside 3',5'-diphosphates (pNp) in the trinucleotide fraction of the RNase T2 digest. The 5'-termimi of 18S and 28S RNA were pUp and pCp, respectively, and found to be almost homogeneous.  相似文献   

4.
5.
6.
7.
The 5'-termini of purified rat liver nucleolar and cytoplasmic 28S ribosomal RNA (rRNA) are precisely located within the homologous rDNA sequence by S1 nuclease protection mapping using an appropriate rDNA restriction fragment. The 5'-termini of nucleolar 28S rRNA are heterogeneous in length. The bulk of the nucleolar 28S rRNA map within two CTC motifs in rDNA located in the internal transcribed spacer 2 at the 50-60 and 5-15 bp upstream from the site of the homogeneous 5'-terminus of the cytoplasmic 28S rRNA. These results provide direct proof that nucleolar 28S rRNA molecules contain excess sequences at their 5'-termini and require further processing to generate the mature cytoplasmic 28S rRNA.  相似文献   

8.
9.
The ubiquitin-like SUMO system functions by a cyclic process of modification and demodification, and recent data suggest that the nucleolus is a site of sumoylation-desumoylation cycles. For example, the tumour suppressor ARF stimulates sumoylation of nucleolar proteins. Here, we show that the nucleolar SUMO-specific protease SENP3 is associated with nucleophosmin (NPM1), a crucial factor in ribosome biogenesis. SENP3 catalyses desumoylation of NPM1-SUMO2 conjugates in vitro and counteracts ARF-induced modification of NPM1 by SUMO2 in vivo. Intriguingly, depletion of SENP3 by short interfering RNA interferes with nucleolar ribosomal RNA processing and inhibits the conversion of the 32S rRNA species to the 28S form, thus phenocopying the processing defect observed on depletion of NPM1. Moreover, mimicking constitutive modification of NPM1 by SUMO2 interferes with 28S rRNA maturation. These results define SENP3 as an essential factor for ribosome biogenesis and suggest that deconjugation of SUMO2 from NPM1 by SENP3 is critically involved in 28S rRNA maturation.  相似文献   

10.
A 2'-O-methyltransferase that transfers the methyl group from S-adenosylmethionine to the 2'-hydroxyl group of ribose moieties of RNA has been purified from Ehrlich ascites tumor cell nucleoli. The partially purified enzyme is devoid of other RNA methylase activities and is free of ribonucleases. The enzyme has optimal activity in tris(hydroxymethyl)aminomethane buffer, pH 8.0, in the presence of 0.4 mM ethylenediaminetetraacetic acid, 2 mM dithiothreitol, and 50 mM KCl, and has an apparent Km for S-adenosylmethionine of 0.44 microM. Gel filtration studies of this enzyme gave a Stokes radius of 43 A. Sedimentation velocity measurements in glycerol gradients yield an S20,w of 8.0 S. From these values, a native molecular weight of 145,000 was calculated. The enzyme catalyzes the methylation of synthetic homoribopolymers as well as 18S and 28S rRNA; however, poly(C) is the preferred synthetic substrate, and preference for unmethylated sequences of rRNA was observed. For each RNA substrate examined, only methylation of the 2'-hydroxyl group of the ribose moieties was detected.  相似文献   

11.
We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.  相似文献   

12.
13.
14.
Most box C/D small nucleolar RNAs (snoRNAs) direct the formation of 2'-O-methylated nucleotides in ribosomal RNA and, apparently, other RNAs present in the nucleolar complex. Sites to be modified are selected by a long (>10-nt) antisense guide sequence in the snoRNA and a distance measurement from a box D or D' element that follows the snoRNA guide sequence. Modification of the substrate occurs in the region of complementarity, at a position five nucleotides upstream from box D/D'. Methylation can be targeted to novel sites by expressing a snoRNA with a new guide sequence. In some cases methylation impairs the growth rate of the cell, indicating that a functionally important nucleotide has been altered. With a view to harnessing snoRNA-directed methylation for functional mapping, we have developed a method for constructing libraries of snoRNA genes that, in principle, can introduce methylation point mutations into any rRNA segment of interest. The strategy and procedures are described here, and preliminary results are presented that show the feasibility of using this technology to probe a region of the yeast large subunit rRNA that includes the core of the peptidyltransferase center.  相似文献   

15.
The maturation of ribosomal RNAs (rRNAs) is an important but incompletely understood process required for rRNAs to become functional. In order to determine the enzymes responsible for initiating 3' end maturation of 23S rRNA in Escherichia coli, we analyzed a number of strains lacking different combinations of 3' to 5' exo-RNases. Through these analyses, we identified RNase PH as a key effector of 3' end maturation. Further analysis of the processing reaction revealed that the 23S rRNA precursor contains a CC dinucleotide sequence that prevents maturation from being performed by RNase T instead. Mutation of this dinucleotide resulted in a growth defect, suggesting a strategic significance for this RNase T stalling sequence to prevent premature processing by RNase T. To further explore the roles of RNase PH and RNase T in RNA processing, we identified a subset of transfer RNAs (tRNAs) that contain an RNase T stall sequence, and showed that RNase PH activity is particularly important to process these tRNAs. Overall, the results obtained point to a key role of RNase PH in 23S rRNA processing and to an interplay between this enzyme and RNase T in the processing of different species of RNA molecules in the cell.  相似文献   

16.
An autoantibody reactive with a conserved sequence of 28 S rRNA (anti-28 S) was identified in serum from a patient with systemic lupus erythematosus. Anti-28 S protected a unique 59-nucleotide fragment synthesized in vitro against RNase T1 digestion. RNA sequence analysis revealed that it corresponded to residues 1944-2002 in human 28 S rRNA and 1767-1825 in mouse 28 S rRNA. These sequences are identical and highly conserved throughout all known eukaryotic 28 S rRNAs. In addition, this fragment is homologous to residues 1052-1110 of Escherichia coli 23 S rRNA that lies within the GTP hydrolysis center of the 50 S ribosomal subunit. Anti-28 S and its Fab fragments strongly inhibited poly(U)-directed polyphenylalanine synthesis, but had no effect on ribosomal peptidyltransferase activity. This effect resulted from inhibition of the binding of elongation factors EF-1 alpha and EF-2 to ribosomes and of the associated GTP hydrolysis. The inhibitory effect was almost completely suppressed by preincubation of anti-28 S with 28 S rRNA or in vitro synthesized RNA fragments containing the immunoreactive region. These results show that the immunoreactive conserved region of 28 S rRNA participates in the interaction of ribosomes with the two elongation factors in protein synthesis.  相似文献   

17.
A procedure for the isolation and purification of a specific hybrid between rat 28S and 18S ribosomal RNA's and nucleolar DNA is described. The method employed includes the following steps: 1) isolation of the nucleolar DNA, 2) hybridization of [14C]rRNA with the nucleolar DNA, and 3) isolation and purification of the rRNA-DNA hybrid complex by chromatography on hydroxylapatite and centrifugation in a CsCl density gradient. In the isolated hybrid complex the RNA:DNA ratio is close to 1:1, and the degree of enrichment of the DNA by the rRNA cistrons is about 1500 times. The hybrid obtained has a sedimentation constant on the order of 20S, is resistant to the action of pancreatic RNase and RNase T1 and sheep brain DNase, and is characterized by high thermostability. Acording to the physicochemical tests used, the rRNA-DNA hybrid complex is a double-stranded poly-nucleotide with an ordered secondary structure.  相似文献   

18.
Evidence that 32 S nRNA contains 5.8 S rRNA was provided by studies on specific oligonucleotide sequences of these RNA species. Purified 32P-labeled 5.8 and 28 S rRNA and 32 S RNA were digested with T-1 ribonuclease, and the products were fractionated according to chain length by chromatography on DEAE-Sephadex A-25 at neutral pH. The oligonucleotides in Peak 8 were treated with alkaline phosphatase and the products were separated by two-dimensional electrophoresis on cellulose acetate at pH 3.5 and DEAE-paper in 7% formic acid. Seven unique oligonucleotide markers for 5.8 S rRNA including the methylated octanucleotide A-A-U-U-Gm-G-A-Gp were present in 32 S RNA but were not found in 28 S rRNA, indicating that 5.8 S rRNA is directly derived from the 32 S nucleolar precursor. These studies confirm a maturation pathway for rRNA species in which 32 S nucleolar RNA is a precursor of 5.8 S rRNA as well as 28 S rRNA.  相似文献   

19.
20.
RRP5 is required for formation of both 18S and 5.8S rRNA in yeast.   总被引:17,自引:1,他引:16       下载免费PDF全文
J Venema  D Tollervey 《The EMBO journal》1996,15(20):5701-5714
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S) are synthesized as a single precursor which is subsequently processed into the mature rRNAs by a complex series of cleavage and modification reactions. In the yeast Saccharomyces cerevisiae, the early pre-rRNA cleavages at sites A0, A1 and A2, required for the synthesis of 18S rRNA, are inhibited in strains lacking RNA or protein components of the U3, U14, snR10 and snR30 small nucleolar ribonucleoproteins (snoRNPs). The subsequent cleavage at site A3, required for formation of the major, short form of 5.8S rRNA, is carried out by another ribonucleoprotein, RNase MRP. A screen for mutations showing synthetic lethality with deletion of the non-essential snoRNA, snR10, identified a novel gene, RRP5, which is essential for viability and encodes a 193 kDa nucleolar protein. Genetic depletion of Rrp5p inhibits the synthesis of 18S rRNA and, unexpectedly, also of the major short form of 5.8S rRNA. Pre-rRNA processing is concomitantly impaired at sites A0, A1, A2 and A3. This distinctive phenotype makes Rrp5p the first cellular component simultaneously required for the snoRNP-dependent cleavage at sites A0, A1 and A2 and the RNase MRP-dependent cleavage at A3 and provides evidence for a close interconnection between these processing events. Putative RRP5 homologues from Caenorhabditis elegans and humans were also identified, suggesting that the critical function of Rrp5p is evolutionarily conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号