首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crude synaptic membranes treated with Triton X-100 (TX) bound gamma-aminobutyric acid (GABA) to two classes of receptor site in Na+-free 10 mM-Tris-sulfate buffer (pH 7.4), but to only a single class of receptor site in 10 mM Tris-sulfate buffer (pH 7.4), containing 150 mM-NaCl. The high-affinity receptor site in TX membranes was specifically masked in the presence of Na+. However, TX membranes incubated in Krebs-Ringer bicarbonate solution (pH 7.4) bound GABA to two classes of receptor site despite the presence of Na+. It was found that addition of bicarbonate ions to the Na+-containing 10 mM-Tris-sulfate buffer (pH 7.4) could restore that high-affinity class of GABA receptors, rendering both classes detectable. This finding suggests that both Na+ and HCO-3 may have a regulatory function on GABA binding to the receptor.  相似文献   

2.
The purpose of this study is to assess the effect of an apparent alteration in intracellular pH and the effect of amiloride on the activity of the Na+/H+ antiporter in perfused rat kidney. Rat kidney-Na+ retention was determined using tracer 22Na in perfusate composed of HCl-glycine buffer (pH 3.80 to pH 5.92) or NH4OH-glycine buffer (pH 6.22-7.95) containing Na+ to match physiologic concentrations. Plotting renal Na+ retention for 10 min versus pH in absence of amiloride showed two classical uncompetitive activator curves for H+, one curve from pH 4.19 to 5.10 and another from pH 6.22 to 7.95. H+ acts as an uncompetitive reversible binding substrate with the receptor triggering activation of the exchanger already sequestered with Na+, thus yielding two Ka values for the exchanger suggesting non-first order kinetics. Using an equation derived for uncompetitive-activation binding of Nao+ and Hi+, plotting [mM Na+ mg protein-1 10 min-1]-1 versus [H+], two linear plots are observed on Cartesian coordinates with abscissa intersecting at 47 +/- 1 microM, pKa = 4.32 +/- 0.02 (pH 4.19-5.10) and 4.21 +/- 0.02 microM, pKa = 5.38 +/- 0.01 (pH 6.22-7.95), respectively. Perfusing buffer containing 2 mM amiloride, completely inactivated the antiporter showing stronger inhibition between pH 3.80 and 5.92. Results suggest the presence of two uncompetitive binding sites for H+ with the Na+/H+ exchanger. One is a high affinity binding site at physiological intracellular apparent pH, and another is a low affinity binding site at ischaemic apparent pH, implying the existence of two titration sites for intracellular pH regulation.  相似文献   

3.
Potassium-stimulated p-nitrophenylphosphatase (K+-pNPPase) activity was investigated in rat somatosensory cortex where 64-88% of enzymatic activity survived 5-10 min of fixation with 3% formaldehyde in 0.1 M cacodylate buffer, pH 7.4. Potassium-stimulated activity was inhibited by 1-10 mM ouabain. Levamisole (1.7 mM) inhibited brain alkaline phosphatase activity, facilitating the detection of K+-pNPPase activity. Strontium (10-20 mM) inhibited enzymatic activity by 38-75%. In parallel histochemical studies reaction product was found in strata, with cortical layers 2, 3, 4 and the outer portion of 5 containing the heaviest deposits. Highly reactive, vertically oriented, large diameter fibers were seen as groups between the outer portion of layer 5 and the pail surface. These fibers apparently arborize in the superficial layers. Smaller fibers were also positive and were oriented in various planes. The highest density of smaller, positive fibers occurred in layers 2 through 5. All positive fibers appeared to be axons or dendrites. Reaction product was not heavily concentrated in neuron perikarya or in glial elements. Sections did not contain reaction product when incubated in media lacking K+ or containing ouabain. The convergence of data from parallel histochemical and biochemical approaches supports the conclusion that the reactivity localized in the cerebral cortex represented the site of K+-pNPPase, a known component of the Na+,K+-adenosine triphosphatase complex. Neuronal processes demonstrated the highest enzymatic activity and may be most important in the active transport of Na+ and K+ in somatosensory cortex.  相似文献   

4.
The effects of bacitracin were investigated on [3H]nitrendipine binding to rat brain and cardiac membranes in a low ionic strength (5 mM Tris-HCl) buffer. Bacitracin inhibited [3H]nitrendipine binding to rat brain and cardiac membranes with IC50 values of 400 +/- 100 and 4600 +/- 400 micrograms/mL, respectively. Scatchard analysis in brain membranes revealed that bacitracin inhibited [3H]nitrendipine binding primarily by reducing the Bmax but also by producing a small increase in the Kd. In brain membranes, Na+ (100 mM) and Ca2+ (2 mM) reduced the potency of bacitracin to inhibit [3H]nitrendipine binding by approximately sixfold with IC50 values of 2600 +/- 300 and 2100 +/- 400 micrograms/mL observed for bacitracin in the presence of 100 mM Na+ and 2 mM Ca2+, respectively. The EC50 values for the effects of Na+ and Ca2+ were 800 +/- 200 microM and 25 +/- 5 mM. K+, Mg2+, choline, and increasing the assay buffer of Tris-HCl to 50 mM also decreased the inhibition of [3H]nitrendipine binding by bacitracin. These results suggest that bacitracin specifically modulates [3H]nitrendipine binding in a cation-dependent manner and that brain and cardiac dihydropyridine binding sites are either biochemically different or exist in a different membrane environment.  相似文献   

5.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

6.
Using the CNS of Lymnaea stagnalis a method is described for the rapid analysis of neurotransmitters and their metabolites using high performance liquid chromatography coupled with electrochemical detection. Tissue samples were homogenised in ice-cold 0.1 M perchloric acid and centrifuged. Using a C(18) microbore column the mobile phase was maintained at a flow rate of 100 microl/min and consisted of sodium citrate buffer (pH 3.2)-acetonitrile (82.5:17.5, v/v) with 2 mM decane-sulfonic acid sodium salt. The potential was set at +750 mV versus Ag|AgCl reference electrode at a sensitivity of 50 nA full scale deflection. The detection limit for serotonin was 11.86 ng ml(-1) for a 5 microl injection. Preparation of tissue samples in mobile phase reduced the response to dopamine and serotonin compared with perchloric acid. In addition it was found that the storage of tissue samples at -20 degrees C caused losses of dopamine and serotonin. As a result of optimising the sample preparation and mobile phase the total time of analysis was substantially reduced resulting in a sample preparation and assay time of 15-20 min.  相似文献   

7.
We studied the effects of alkali metal cations on the terminal stages of complement lysis of human and sheep HK erythrocytes. Sensitized erythrocytes (EA) were reacted with limited amounts of complement for 1 hr at 37 degrees C in buffer containing 147 mM NaCl (Na buffer), which resulted in 10-40% lysis. The unlysed cells were washed with Na buffer at 0-2 degrees C and incubated for 1 hr at 37 degrees C in buffers containing 147 mM of the various alkali metal cations. Although additional lysis (25 to 65%) occurred with K, Rb, or Cs buffer, only minor degrees developed with Na or Li buffer, only minor degrees developed with Na or Li buffer. Intermediate levels occurred with 100 mM of the divalent alkali cations. Halogen ions and SCN-(147 MM), Ca++ (0.15mM), and Mg++ (0.5 mM) did not alter the effect of the alkali metal cations. Lysis occurring in K+, Rb+ or Cs+ proceeded without lag, was temperature dependent with an optimum of 43 degrees C, and had a pH optimum of 6.5. Lysis in K and Na buffers was unaffected by 10(-3) to 10(-5) M ouabain. Experiments with mixtures of cations indicated that Na+ had a mild inhibitory effect that could be totally overcome by K+, partially by Rb+, and not at all by Cs+. Li+ had a strong inhibitory effect, 6 X 10(-5) M causing 50% inhibition in buffers containing 147 mM K+, Rb+, or Cs+. By using intermediate complexes of EA and purified complement components we demonstrated that K+ enhances the lytic action of C8 on EAC1-7 as well as that of C9 on EAC1-8. It was known that Li+ facilitates lysis when acting on the entire complement reaction. We found that Li+ enhanced the lytic action of C8 on EAC1-7, with a kinetic that differed from that of the K+ effect. In addition, Li+ inhibited the enhancing effect of K+ upon lysis of EAC1-8 by C9. This occurred at concentration of Li+ similar to those which inhibited the additional lysis by K+, Rb+, and Cs+ of cells that were pretreated in Na buffer with the entire complement sequence. We propose that the major effects of alkali metal cations on complement lysis are due to their interaction with C8 and/or membrane constitutes.  相似文献   

8.
A high basal level of phosphorylation (approx. 70% of the optimal Na+-dependent phosphorylation level) is observed in 50 mM imidazole-HCl (pH 7.0), in the absence of added Na+ and K+ and the presence of 10-100 microM Mg2+. In 50 mM Tris-HCl (pH 7.0) the basal level is only 5%, irrespective of the Mg2+ concentration. Nevertheless, imidazole is a less effective activator of phosphorylation than Na+ (Km imidazole-H+ 5.9 mM, Km Na+ 2 mM under comparable conditions). Imidazole-activated phosphorylation is strongly pH dependent, being optimal at pH less than or equal to 7 and minimal at pH greater than or equal to 8, while Na+-activated phosphorylation is optimal at pH 7.4. This suggests that imidazole-H+ is the activating species. Imidazole facilitates Na+-stimulated phosphorylation. The Km for Na+ decreases from 0.63 mM at 5 mM imidazole-HCl to 0.21 mM at 50 mM imidazole-HCl (pH 7; 0.1 mM Mg2+ in all cases). Imidazole-activated phosphorylation is more sensitive to inhibition by K+ (I50 = 12.5 microM) than Na+-activated phosphorylation (I50 = 180 microM). Mg2+ antagonizes activation by imidazole-H+ and also inhibition by K+. The Ki value for Mg2+ (approx. 0.3 mM) is the same for the two antagonistic effects. Tris buffer (pH 7.0) inhibits imidazole-activated phosphorylation with an I50 value of 30 mM in 50 mM imidazole-HCl (pH 7.0) plus 0.1 mM Mg2+. We conclude that imidazole-H+, but not Tris-H+, can replace Na+ as an activator of ATP-dependent phosphorylation, primarily by shifting the E2----E1 transition to the right, leading to a phosphorylating E1 conformation which is different from that in Tris buffer.  相似文献   

9.
A NADH coupled assay was used to evaluate the effect of crownethers on the kinetics of Na+, K+ activated ATPase. The coupledassay reaction mixture contained lactic acid dehydrogenase,pyruvate kinase (0.06 mg protein/ml), phosphoenolpyruvate (0.8mM), NADH (1.41 mM), ATPase (0.079 mg protein/ml), ATP (variable)in a 50mM Tris HC1 buffer, pH 7.8, containing 100 mM NaCl, 10mM KCl, 5 mM MgCl2 and 3 mM EDTA. Two crown ethers and two cryptand polyethers were used, thedicyclohexano-18- crown-6 (18-C-6) inhibited over the rangefrom 18 mM (9%) to 100 mM (66%), dicyclohexano- 21-crown-7 (21-C-7)from 9 mM (13%) to 110 mM (93%). The cryptand 4,7,13,16,21-pentaoxa-l,10-diazabicyclo-(8,8,5)-tricosane(k221) inhibited over the range from 2 mM (9%) to 20 mM (82%),while its analogue, 4,7,13,16,21,24-hexaoxal, 10-diazabicyclo-(8,8,8)-tricosane(k222) inhibited from 0.3 mM (11%) to 18 mM (65%). The kineticplots exhibits uncompetitive inhibition for 18-C-6, and suggestthe same for 21-C-7, k221 and k222, although noncompetitiveinhibition cannot be excluded from the latter. (Received January 6, 1981; Accepted February 10, 1981)  相似文献   

10.
A simple and sensitive procedure was developed for the simultaneous determination of substances metabolically related to monoamine transmitters including 3-methoxy-4-hydroxy-phenylethylene glycol (MOPEG) in dissected brain regions of rats using high-performance liquid chromatography combined with electrochemical detection. The tissue sample was homogenized in HCl solution. The homogenate was divided into two portions, of which one was used for the assay of MOPEG after enzymatic hydrolysis with sulfatase. A butanol extraction process was performed on the remaining portion to obtain the sample of monoamine transmitters, precursor amino acids, and acidic metabolites. The monoamines and precursor amino acids were finally recovered in HCl solution, while the acidic metabolites shifted into the alkaline buffer from the organic layer. The basic and neutral substances were separated with a 0.1 M sodium citrate/citric acid buffer system (pH 4.0) containing 1% tetrahydrofuran, and the acidic ones with 0.075 M sodium citrate/citric acid buffer (pH 3.5) containing 1% tetrahydrofuran, 10% methanol, and 12% acetic acid. The steady-state concentrations of three monoamine transmitters (noradrenaline, dopamine, and 5-hydroxytryptamine) were determined together with their precursors and metabolites. Changes in the concentrations of these substances were examined for various drugs, of which the effects had been previously confirmed. The changes reflected putative drug effects and demonstrated that the procedure was applicable to the regional determination of monoamines and their metabolically related substances.  相似文献   

11.
A sensitive and rapid assay of Ca2+ binding to proteins was developed, based on the competition of Ca2+ binding to the protein of interest and fluo-3, a fluorescent Ca2+ indicator. Ca2+ binding to fluo-3 and bovine alpha-lactalbumin was analyzed at ten different pH values and a range of Na+ and K+ concentrations. We demonstrate that the binding constants of alpha-lactalbumin, determined by means of the competition assay and using intrinsic protein fluorescence, are the same within experimental error. The dissociation constant of the alpha-lactalbumin--Ca2+ complex in 50 mM Hepes containing 150 mM Na+ at pH 7.4 and 25 degrees C, was found to be 123 +/- 2 nM and 103 +/- 43 nM when determined by the competition assay and intrinsic protein fluorescence, respectively. Binding of Ca2+ to alpha-lactalbumin did not depend on pH in the range 6.6-8.4 and was differently affected by Na+ and K+. EDTA-agarose, a chelating chromatography material, was synthesized and used to remove Ca2+ from buffer and protein solutions. The total concentration of Ca2+ in 50 mM Hepes, containing 150 mM Na+ at pH 7.4, was lowered to 119 +/- 13 nM and the number of Ca2+ bound/molecule alpha-lactalbumin was lowered to 0.069 +/- 0.006. No interaction between fluo-3 and alpha-lactalbumin could be discerned from spectral analysis and fluorescence anisotropy measurements.  相似文献   

12.
The regulation of intracellular pH (pHi) was monitored in a virus-transformed cell clone derived from bovine ciliary body exhibiting characteristics of pigmented ciliary epithelium. Data were obtained from confluent monolayers grown on plastic coverslips in nominally bicarbonate-free media using the pH-sensitive absorbance of 5- (and 6-) carboxy-4',5'-dimethylfluorescein. Under resting conditions, pHi averaged 6.98 +/- 0.01 (SEM; n = 57). When cells were acid loaded by briefly exposing them to Ringer containing NH4+ and then withdrawing the NH4+, pHi spontaneously regained its initial value. In the presence of 1 mM amiloride or in the absence of Na+, this process was blocked, indicating the involvement of an Na+/H+ exchanger in the regulation of pHi after an acid load. Removing Na+ during resting conditions decreased cytoplasmatic pH. This acidification could be slowed by amiloride, which is evidence for reversal of the Na+/H+ countertransport exchanging intracellular Na+ for extracellular protons. Application of 1 mM amiloride during steady state led to a slow acidification. Thus the Na+/H+ exchanger is operative during resting conditions extruding protons, derived from cellular metabolism, or from downhill leakage into the cell. Addition of Na+ to Na+ -depleted cells led to an alkalinization, which was sensitive to amiloride, with an IC50 of about 20 microM. This alkalinization was attributed to the Na+/H+ exchanger and exhibited saturation kinetics with increasing Na+ concentrations, with an apparent KM of 29.6 mM Na+. It is concluded that Na+/H+ exchange regulates pHi during steady state and after an acid load.  相似文献   

13.
G E Fagg  B Riederer  A Matus 《Life sciences》1984,34(18):1739-1745
The regulatory effects of Na+ on C1-/Ca2+-dependent and C1-/Ca2+-independent L-glutamate binding sites were examined. In Tris-C1-/Ca2+ buffer, the binding of L-[3H]-glutamate to rat brain synaptic membranes was 5-fold higher than in Tris-acetate buffer. Low concentrations of Na+ (less than 5 mM) markedly depressed L-glutamate binding when assayed in Tris-C1/Ca2+ buffer, and this effect was attenuated by the selective blocker of C1-/Ca2+-dependent binding sites, DL-2-amino-4-phosphonobutyrate (APB). Scatchard analyses indicated that the effect of Na+ was due to a decrease in the number of C1-/Ca2+-dependent binding sites with no change in affinity. In Tris-acetate buffer, low concentrations of Na+ had little effect on L-glutamate binding. Dose-response curves for the inhibition of L-glutamate binding by DL-APB indicated a predominant high-affinity (Ki 5-10 microM) inhibitory component in Tris-C1-/Ca2+ buffer, but mainly a low-affinity component (Ki 1-2 mM) in Tris-acetate buffer and in Tris-C1-/Ca2+ buffer containing Na+. These data indicate that low concentrations of Na+ regulate specifically the C1-/Ca2+-dependent, APB-sensitive class of L-glutamate binding sites.  相似文献   

14.
Abstract: 5-Hydroxytryptamine (5-HT) in mouse brain and spinal cord was assayed in the same samples using a fluorimetric assay and a high pressure liquid chromatographic (HPLC) assay with electrochemical detection. The HPLC assay was able to detect levels of 5-hydroxytryptamine as low as 0.2-0.5 pmol. With the column (Vydac cation exchange), solvent system (acetate/citrate buffer, 0.1 or 0.2 M, pH 4.8-5.2) extraction procedure and electrode potential (+0.55 V) used, the HPLC assay was specific for 5-HT. When the electrode potential was increased to +0.9 V tryptamine could also be detected, with a longer retention time than 5-hydroxytryptamine. The percentage increase in mouse brain 5-hydroxytryptamine after pargyline (75 mg/kg) and pargyline + l -tryptophan (100 mg/kg) was very similar whether measured by fluorimetry or HPLC, although the fluorimetric assay gave consistently higher absolute values (24–32%) in both control and drug-treated animals. l -Tryptophan (25, 50 and 100 mg/kg) also increased brain 5-hydroxytryptamine with similar percentage increases with either assay method. There was a significant correlation ( P < 0.001) between the values obtained with the two assay methods. The results confirm the use of HPLC with electrochemical detection as a sensitive and specific assay method for 5-hydroxytryptamine and indicate its potential use for the assay of tryptamine, and the importance of determining the electroactivity and retention characteristics of any drugs used.  相似文献   

15.
A rapid and sensitive high-performance liquid chromatographic (HPLC)-fluorimetric assay method has been developed for the determination of carboxypeptidase H activity based on the measurement of N-(5-dimethyl-aminonaphthalene-1-sulfonyl)glycine (dansyl-Gly) formed enzymatically from dansyl-Gly-L-Lys or dansyl-Gly-L-Arg. Dansyl-Gly is eluted faster than the substrates with an N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (Hepes) buffer at pH 7.0 containing methanol, but eluted slower with an acidic buffer at pH 4.6. The new HPLC method separates the product and substrate in less than 5 min using an elution buffer at pH 7.0 containing 60% methanol. Using this method carboxypeptidase H activity has been detected in rat sciatic nerves. This HPLC method facilitates the assay of carboxypeptidase H activity in the enzyme samples from various tissues.  相似文献   

16.
22Na+ uptake into confluent monolayers of cultured bovine corneal endothelial cells was studied in the presence of ouabain (10(-4)M) to inhibit active sodium extrusion. In bicarbonate saline, uptake was reduced to a similar degree either by amiloride (10(-3)M) or by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) (10(-3)M). A further reduction was obtained with SITS-pretreated cells in the presence of amiloride. SITS-sensitive uptake was further characterized in saline containing both ouabain (10(-4)M) and amiloride (10(-3)M). It was absolutely dependent on bicarbonate, which could not be substituted by other plasma membrane permeable buffers (50 mM acetate or 25 mM glycodiazine). It was a saturable function of both bicarbonate and sodium concentration. Half-maximal fluxes occurred between 3 and 7 mM HCO3 (at 151 mM Na) and between 35 and 60 mM Na (at 28 mM HCO3). Uptake into sodium-depleted cells was reduced as opposed to sodium-rich cells, and SITS-sensitive 22Na+ efflux out of 22Na+-loaded cells into sodium-free medium was less than efflux into sodium saline, indicating trans-stimulation by sodium. The amiloride-sensitive pathway was studied in the absence of bicarbonate to inhibit uptake via the SITS-sensitive pathway. 22Na+ uptake into sodium-depleted cells increased steeply with extracellular pH in the range between pH 6 and 8 and could be largely blocked by 10(-3), but not by 10(-5) M amiloride. It is concluded that bovine corneal endothelial cells possess at least two distinct pathways for sodium uptake, amiloride sensitive 22Na+ fluxes being mediated by a Na+/H+ antiport, while the SITS-sensitive process is probably identical to a bicarbonate-sodium cotransport system postulated earlier from electrophysiological studies.  相似文献   

17.
An ion-pairing high-performance liquid chromatographic method for the determination of N-acetylaspartate and N-acetylglutamate using a C-18 column and a UV detection at 210 nm wavelength, by means of a diode array detector, is presented. A buffer containing 2.8 mM tetrabutylammonium hydroxide, 25 mM KH(2)PO(4), 1.25% methanol, pH 7. 00, is utilized for the isocratic separation of these N-acetylated amino acids, at a flow rate of 1 ml/min and a column temperature of 23 degrees C. The suitability of this chromatographic separation (without additional chromatographic steps prior to HPLC assay) to monitor variations both of N-acetylaspartate and of N-acetylglutamate in perchloric acid brain extracts from rats subjected to the impact acceleration model of diffuse brain injury is also reported. According to the data presented, this HPLC method allows the separation of the two N-acetylated amino acids considered from the many possible interfering compounds, commonly present in extracts of cerebral tissue, which have high extinction coefficients at 210 nm wavelength. Values of N-acetylaspartate and N-acetylglutamate determined by this method showed that cerebral trauma negatively affects both compounds, according to the severity of trauma itself.  相似文献   

18.
Reversed phase high pressure liquid chromatography (HPLC) solvent systems have been developed for the separation of intermediates in the formation of bile acids and bile acid conjugates from cholesterol. Four different mobile phases (water-methanol, 10 mM acetate buffer (pH 4.37)-methanol, 30 mM trifluoroacetic acid (pH 2.9 with triethylamine)-methanol, and 50 mM potassium phosphate buffer (pH 7.0)-2-propanol) have been applied to obtain separation of all the main intermediates with use of the same reversed phase column (Zorbax ODS).  相似文献   

19.
This study was designed to establish the properties of liver plasma membranes (LPM) Na+,K+-ATPase in the hamster and to determine whether a similar assay may be used to measure enzyme activity in the hamster and in the rat. Maximal Na+,K+-ATPase activity was obtained when the assay medium contained 5 mM Mg APT2- with or without 1 mM free Mg2+, 120 mM Na+, 12,5 mM K+. The incubation must be performed at 37 degrees C, pH 7.4. In the absence of free Mg2+, the saturation curve with respect to the substrate Mg ATP2- resulted in biphasic complex kinetics with a maximal activity at a substrate concentration of 5 mM. In the presence of 1 mM free Mg2+ activation of Na+,K+-ATPase and modification of the kinetics were observed: the biphasic curve tended to disappear and to become of the Michaelis-Menten type. The apparent Km for Mg APT2- was 0.36 mM and the Vmax 34.5 mumol.h-1.mg protein-1. In the presence of 10 mM free Mg2+ a decrease in the Vmax was observed without any effect on the apparent Km for Mg APT2-. It is concluded that the same incubation medium may be used to assay LPM N+,K+-ATPase from hamster and rat and that the addition of 1 mM free Mg2+ to the incubation medium is recommended to obtain Michaelis-Menten kinetics in order to eliminate complex kinetics due to the absence of free Mg2+.  相似文献   

20.
Na+/H+ exchange activity has been examined in endothelial cells isolated from porcine brain capillaries. Intracellular pH (pHi) changes were monitored using a confocal laser scanning microscope and the pH-sensitive fluorescence indicator 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). Acid load of the brain capillary endothelial cells was performed with a NH4Cl (20 mM) prepulse. In bicarbonate-free solutions pHi recovered within 3 to 10 min. Removal of extracellular Na+ ions demonstrated that H+ extrusion after an acid load of the cells was Na+ dependent. The Na+/H+ exchange could be completely blocked by EIPA (5-(N-ethyl-N-isopropyl)amiloride) as well as by the novel inhibitor 3-methylsulfonyl-4-piperidinobenzoyl guanidine hydrochloride (HOE 694) in concentrations of 1 to 10 microM, respectively. EIPA and HOE 694 in a concentration of 0.1 microM caused a partial block of Na+/H+ exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号