首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The human chromosome (HSA)19q region has been shown to correspond to swine chromosome (SSC) 6q11-->q21 by bi-directional chromosomal painting and gene mapping. However, since the precise correspondence has not been determined, 26 genes localized in HSA19q13.3-->q13.4 were assigned to the SSC6 region mainly by radiation hybrid (RH) mapping, and additionally, by somatic cell hybrid panel (SCHP) mapping, and fluorescent in situ hybridization (FISH). Out of the 26 genes, 24 were assigned to a swine RH map with LOD scores greater than 6 (threshold of significance). The most likely order of the 24 genes along SSC6 was calculated by CarthaGene, revealing that the order is essentially the same as that in HSA19q13.3-->q13.4. For AURKC and RPS5 giving LOD scores not greater than 6, SCHP mapping and FISH were additionally performed; SCHP mapping assigned AURKC and RPS5 to SSC6q22-->q23 and SSC6q21, respectively, which is consistent with the observation of FISH. Consequently, all the genes (26 genes) examined in the present study were shown to localize in SSC6q12-->q23, and the order of the genes along the chromosomes was shown to be essentially the same in swine and human, though several intrachromosomal rearrangements were observed between the species.  相似文献   

2.
Mapping of the human complement factor I gene to 4q25   总被引:3,自引:0,他引:3  
A detailed genetic and physical map of human complement factor I (IF) using somatic cell hybrids, in situ hybridization, and genetic linkage is reported. The gene has been localized to band 4q25. The order GC-INP10-ADH3-EGF-IF-IL2-MNS is proposed for genes on 4q on the basis of genetic and physical mapping techniques. A BclI polymorphism found with the IF probe demonstrated a maternal origin for a de novo deletion of chromosome 4 that was used in physically mapping the gene. The genetic and physical distances around band 4q24 suggest that 1 cM is approximately 1.2 million bp of DNA. This work provides a useful addition to the map of 4q.  相似文献   

3.
Histone modifications (methylation and demethylation) regulate gene expression and play a role in cell proliferation and differentiation by their actions on chromatin structure. In this context, we studied the temporal expression profiles of genes acting on histone methylation and demethylation during skeletal muscle proliferation and differentiation. Quantitative real-time PCR was used to quantify the mRNA levels of CARM1 , JARID1A , JMJD2A , LSD1 , PRMT2 , PRMT5 , SMYD1 , SMYD2 , SMYD3 , SETDB1 , Suv39h2 and SUZ12 in foetal skeletal muscle. Our results showed that CARM1 , JARID1A , JMJD2A , SMYD1 and SMYD2 were differentially expressed in embryonic muscles of 33 days post-conception (dpc), 65 dpc and 90 dpc. These 12 genes were mapped to porcine chromosomes (SSC) 2q21–24, 5q25, 6q35, 6q12–21, 6p15, 7q21, 3q21–27, 9q26, 10p16, 4q15–16, 10q14–16 and 12p12 respectively. Taking into account the reported QTL mapping results, gene expression analysis and radiation hybrid mapping results, these results suggest that five genes ( CARM1 , JARID1A , JMJD2A , SMYD1 and SMYD2 ) could be good candidate genes for growth and backfat thickness traits.  相似文献   

4.
Summary A mentally retarded boy with discrete physical findings, Hirschsprung disease (HD) and a microdeletion of 13q,del(13)(q32.3q33.2) is described. Band 13q33.1 was consistently missing in all cells. There have been, to date, 4 published cases of deletions involving the long arm of chromosome 13 associated with HD: the interstitial deletion reported here is much smaller than, and it partially overlaps with, the previously reported deletions; it could be helpful for mapping one of the genes involved in this disease.  相似文献   

5.
Head smut, caused by the fungus Sphacelotheca reiliana (Kühn) Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL) population from a cross between a resistant line “QI319” and a susceptible line “Huangzaosi” (HZS) with a genetic map constructed from genotyping-by-sequencing (GBS) data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR) and Chromosome 5 (q5.03HR), q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS) using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.  相似文献   

6.
7.
A cell line hemizygous for a deletion of the human chromosome region 7q22----q32 was used for fine mapping three probes closely linked to the cystic fibrosis locus. The three markers, J.3.11, 7c22, and met, were all found to be deleted from the region 7q22----q32. This finding, in combination with previously published mapping data, led to the assignment of J3.11 to 7q22.  相似文献   

8.
A NotI linking library was constructed from a somatic cell hybrid containing chromosome 17q as its only human material. A total of 112 human clones were assigned to nine regions of 17q using a somatic cell hybrid mapping panel. The library includes clones that detect the acute promyelocytic leukemia and von Recklinghausen neurofibromatosis translocation breakpoints at 17q11.2-12 and 17q11.2, respectively, on pulsed-field gel electrophoresis. The mapped clones represent over 50% of the estimated number of NotI sites on 17q, and therefore constitute an important resource for long-distance mapping.  相似文献   

9.
10.
Molecular characterization of patients with 18q23 deletions.   总被引:3,自引:0,他引:3       下载免费PDF全文
The 18q- syndrome is a deletion syndrome that is characterized by mental retardation, hearing loss, midfacial hypoplasia, growth deficiency, and limb anomalies. Most patients with this syndrome have deletions from 18q21-qter. We report on three patients with deletions of 18q23. A mother and daughter with identical deletions of 18q23 have many of the typical features of the 18q- syndrome, including midfacial hypoplasia and hearing loss. In contrast, the third patient has few of the symptoms of the 18q- syndrome. A contig of the 18q23 region was generated to aid in the mapping of the breakpoints. FISH was used to map both breakpoints to the same YAC clone. Furthermore, somatic-cell hybrids from the daughter and the third patient were isolated. The mapping results of sequence-tagged sites relative to the two breakpoints were identical, suggesting that the two deletion breakpoints map very close to one another. The analyses of these patients demonstrate that the critical region for the 18q- syndrome maps to 18q23 but that a deletion of 18q23 does not always lead to the clinical features associated with the syndrome. These patients demonstrate the wide phenotypic variability associated with deletions of 18q.  相似文献   

11.
Gene mapping by enzymatic amplification from flow-sorted chromosomes   总被引:7,自引:0,他引:7  
F Cotter  S Nasipuri  G Lam  B D Young 《Genomics》1989,5(3):470-474
A new approach to gene mapping which combines enzymatic amplification with high-resolution flow sorting of human chromosomes has been devised. Reliable amplification from as few as 200 chromosomes has been demonstrated. This method, with particular application to mapping the position of chromosomal translocations, has been used to show that the breakpoint for the constitutional translocation t(11;22)(q23;q11) lies proximal to the genes c-ets-1, Thy-1, and T3 delta and distal to the int-2 gene. The mapping was confirmed by Southern analysis to much larger numbers of chromosomes sorted from the same cell line. Control reactions for the bcl-2 gene on chromosome 18 and the C alpha gene of the IGH locus on chromosome 14 demonstrated the discrimination which can be achieved.  相似文献   

12.
A candidate tumor suppressor gene (TSG) site at 12q22 characterized by a high frequency of loss of heterozygosity (LOH) and a homozygous deletion has previously been reported in human male germ cell tumors (GCTs). In a detailed deletion mapping analysis of 67 normal-tumor DNAs utilizing 20 polymorphic markers mapped to 12q22–q24, we identified the limits of the minimal region of deletion at 12q22 between D12S377 (proximal) and D12S296 (distal). We have constructed a YAC contig map of a 3-cM region of this band between the proximal marker D12S101 and the distal marker D12S346, which contained the minimal region of deletion in GCTs. The map is composed of 53 overlapping YACs and 3 cosmids onto which 25 polymorphic and nonpolymorphic sequence-tagged sites (STSs) were placed in a unique order. The size of the minimal region of deletion was approximately 2 Mb from overlapping, nonchimeric YACs that spanned the region. We also developed a radiation hybrid (RH) map of the region between D12S101 and D12S346 containing 17 loci. The consensus order developed by RH mapping is in good agreement with the YAC STS-content map order. The RH map estimated the distance between D12S101 and D12S346 to be 246 cR8000and the minimal region of deletion to be 141 cR8000. In addition, four genes that were previously mapped to 12q22 have been excluded as candidate genes. The leads gained from the deletion mapping and physical maps should expedite the isolation and characterization of the TSG at 12q22.  相似文献   

13.
A somatic cell hybrid mapping panel was constructed to localize cloned DNA sequences to any of 15 potentially different regions of human chromosome 17. Relatively high-resolution mapping is possible for 50% of the chromosome length in which 12 breakpoints are distributed over approximately 45 megabases, with an average spacing estimated at 1 breakpoint every 2-7 megabases. This high-resolution capability includes the pericentromeric region of 17 to which von Recklinghausen neurofibromatosis (NF1) has recently been mapped. Using 20 cloned genes and anonymous probes, we have tested the expected order and location of panel breakpoints and confirmed, refined, or corrected the regional assignment of several cloned genes and anonymous probes. Four markers with varying degrees of linkage to NF1 have been physically localized and ordered by the panel: the loosely linked markers myosin heavy chain 2 (25 cM) to p12----13.105 and nerve growth factor receptor (14 cM) to q21.1----q23; the more closely linked pABL10-41 (D17S71, 5 cM) to p11.2; and the tightly linked pHHH202 (D17S33) to q11.2-q12. Thus, physical mapping of linked markers confirms a pericentromeric location of NF1 and, along with other data, suggests the most likely localization is proximal 17q.  相似文献   

14.
15.
The subtelomeric region of human chromosome 4q contains the locus for facioscapulohumeral muscular dystrophy (FSHD). The FSHD mutation is a deletion within an array of 3.3-kb tandem repeats (D4Z4). The disease mechanism is unknown but is postulated to involve position effect. A closely related 3.3-kb array on chromosome 10qter, in contrast, is not associated with a disease phenotype. We show here that the 4q homology on chromosome 10 is not confined to the 3.3-kb repeats but extends both proximally (42 kb) and distally to include the telomere. We have also identified the most distal expressed gene on 10q known so far, mapping only 96 kb from the 3.3-kb repeat array. A 4q variant has also been identified; there is 92%nucleotide identity between the two 4q forms, 4qA and 4qB. The 4qter and 10qter forms show homology to other chromosome ends, including 4p, 21q, and 22q, and these regions may represent a relatively common subtelomeric domain.  相似文献   

16.
Chromosome 22q11 contains a large number of interesting loci, including genes associated with cancer and developmental defects. The region is also the site of the lambda immunoglobulin variable and constant regions and the BCR, γ-glutamyl transpeptidase, and GGT-like activity multigene families. Because of the complexities associated with mapping highly related gene families, we have examined the utility of mapping large areas of DNA using a defined approach. A total of 21 complete NotI sites from band q1 l were cloned and ordered into six noncontiguous clusters of sites using a combination of somatic cell hybrid panels, NotI jumping and linking libraries, and fluorescence in situ hybridization. The largest cluster spanned an estimated 2 Mb of NotI fragments, the smallest 115 kb. Approximately 3.5 Mb of band q11 could be examined for rearrangements in NotI restriction enzyme fragments. A number of conserved sequences, two genes, and a minimum of two families of related sequences were identified adjacent to NotI sites.  相似文献   

17.
A panel of 63 radiation-reduced hybrids has been derived from a mouse cell line containing a neo-marked human Chromosome (Chr) 6, primarily to provide a resource for higher resolution localization of new markers. Hybrids were generated with radiation doses of 40–400 Gy, selected in G418, and were shown by PCR to contain the neo gene. PCR was also used to score the retention of 15 loci that map from 6q13 to q25.2 of the current consensus map plus six other loci assigned to 6q26-q27. An average retention frequency of 27.8% was observed, with the highest frequencies at D6S313 and D6S280 (63.5%) located near the centromere at 6q13, and at D6S283 (68.5%) at 6q16.3-q21, presumably close to the neo integration site. Lowest frequencies (4.8%) were observed for telomeric markers. All markers segregated independently except D6S297 and D6S193. Agreement and some improvement to the current consensus map of 6q was made by mapping 12 loci by the non-parametric statistical method of Falk. In addition, deletion mapping with informative hybrids allowed the ordering of six loci from 6q26 to q27 and permitted some integration of maps of this region.  相似文献   

18.
BACKGROUND: NTDs are considered complex disorders that arise from an interaction between genetic and environmental factors. NTD family 8776 is a large multigenerational Caucasian family that provides a unique resource for the genetic analysis of NTDs. Previous linkage analysis using a genome‐wide SNP screen in family 8776 with multipoint nonparametric mapping methods identified maximum LOD* scores of ~3.0 mapping to 2q33.1–q35 and 7p21.1–pter. METHODS: We ascertained an additional nuclear branch of 8776 and conducted additional linkage analysis, fine mapping, and haplotyping. Expression data from lymphoblast cell lines were used to prioritize candidate genes within the minimum candidate intervals. Genomic copy number changes were evaluated using BAC tiling arrays and subtelomeric fluorescent in situ hybridization probes. RESULTS: Increased evidence for linkage was observed with LOD* scores of ~3.3 for both regions. Haplotype analyses narrowed the minimum candidate intervals to a 20.3 Mb region in 2q33.1–q35 between markers rs1050347 and D2S434, and an 8.3 Mb region in 7p21.1–21.3 between a novel marker 7M0547 and rs28177. Within these candidate regions, 16 genes were screened for mutations; however, no obvious causative NTD mutation was identified. Evaluation of chromosomal aberrations using comparative genomic hybridization arrays, subtelomeric fluorescent in situ hybridization, and copy number variant detection techniques within the 2q and 7p regions did not detect any chromosomal abnormalities. CONCLUSIONS: This large NTD family has identified two genomic regions that may harbor NTD susceptibility genes. Ascertainment of another branch of family 8776 and additional fine mapping permitted a 9.1 Mb reduction of the NTD candidate interval on chromosome 7 and 37.3 Mb on chromosome 2 from previously published data. Identification of one or more NTD susceptibility genes in this family could provide insight into genes that may affect other NTD families. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
20.
The epidermal differentiation complex (EDC) unites a remarkable number of structurally, functionally, and evolutionarily related genes that play an important role in terminal differentiation of the human epidermis. It is localized within 2.05 Mb of region q21 on human chromosome 1. We have identified and characterized 24 yeast artificial chromosome (YAC) clones by mapping individual EDC genes, sequence-tagged site (STS) markers (D1S305, D1S442, D1S498, D1S1664), and 10 new region-specific probes (D1S3619–D1S3628). Here we present a contig that covers about 6 Mb of 1q21 including the entire EDC. Fluorescencein situhybridization on metaphase chromosomes with two YACs flanking the EDC determined its chromosomal orientation and established, in conjunction with physical mapping results, the following order of genes and STSs: 1cen–D1S442–D1S498–S100A10–THH–FLG–D1S1664–IVL–SPRR3–SPRR1–SPRR2–LOR–S100A9–S100A8–S100A7–S100A6–S100A5–S100A4–S100A3–S100A2–S100A1–D1S305–1qtel. These integrated physical, cytogenetic, and genetic mapping data will be useful for linkage analyses of diseases associated with region 1q21 and for the identification of novel genes and regulatory elements in the EDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号