首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the earliest effects of platelet-derived growth factor (PDGF) on human fibroblasts in culture is an induction of membrane ruffling. The morphology of the ruffles induced by PDGF is unique in that they form circular arrangements on the dorsal side of the cells. Here we report that the induction of circular ruffle arrangements is an effect specific for PDGF, dose-dependent and inhibitable by anti-PDGF antibodies. We have attempted to utilize this effect to design a rapid and sensitive bioassay for PDGF. The "membrane ruffling assay" is compared with other methods to measure PDGF and its specificity with regard to the different dimeric forms of PDGF is discussed. Introduction of Ca2+ into the cells via the Ca2+ ionophore A23187 or the addition of the tumor-promor 12-O-tetradecanoylphorbol-13-acetate (TPA), which is a stimulator of protein kinase C, does not induce circular ruffle formations on human fibroblasts, neither does the addition of the combination of these two agents. However, addition of TPA almost completely inhibits PDGF-induced circular ruffle formations. Further, we find a shift in the time-course of the PDGF-induced circular ruffle formations by sodium orthovanadate, an inhibitor of protein tyrosine phosphatases. This may indicate the involvement of protein phosphorylation in the regulation of PDGF-induced membrane ruffling.  相似文献   

2.
Activation of the tyrosine kinase JAK2 is an essential step in cellular signaling by growth hormone (GH) and multiple other hormones and cytokines. Murine JAK2 has a total of 49 tyrosines which, if phosphorylated, could serve as docking sites for Src homology 2 (SH2) or phosphotyrosine binding domain-containing signaling molecules. Using a yeast two-hybrid screen of a rat adipocyte cDNA library, we identified a splicing variant of the SH2 domain-containing protein SH2-B, designated SH2-Bbeta, as a JAK2-interacting protein. The carboxyl terminus of SH2-Bbeta (SH2-Bbetac), which contains the SH2 domain, specifically interacts with kinase-active, tyrosyl-phosphorylated JAK2 but not kinase-inactive, unphosphorylated JAK2 in the yeast two-hybrid system. In COS cells coexpressing SH2-Bbeta or SH2-Bbetac and murine JAK2, both SH2-Bbetac and SH2-Bbeta coimmunoprecipitate to a significantly greater extent with wild-type, tyrosyl-phosphorylated JAK2 than with kinase-inactive, unphosphorylated JAK2. SH2-Bbetac also binds to immunoprecipitated wild-type but not kinase-inactive JAK2 in a far Western blot. In 3T3-F442A cells, GH stimulates the interaction of SH2-Bbeta with tyrosyl-phosphorylated JAK2 both in vitro, as assessed by binding of JAK2 in cell lysates to glutathione S-transferase (GST)-SH2-Bbetac or GST-SH2-Bbeta fusion proteins, and in vivo, as assessed by coimmunoprecipitation of JAK2 with SH2-Bbeta. GH promoted a transient and dose-dependent tyrosyl phosphorylation of SH2-Bbeta in 3T3-F442A cells, further suggesting the involvement of SH2-Bbeta in GH signaling. Consistent with SH2-Bbeta being a substrate of JAK2, SH2-Bbetac is tyrosyl phosphorylated when coexpressed with wild-type but not kinase-inactive JAK2 in both yeast and COS cells. SH2-Bbeta was also tyrosyl phosphorylated in response to gamma interferon, a cytokine that activates JAK2 and JAK1. These data suggest that GH-induced activation and phosphorylation of JAK2 recruits SH2-Bbeta and its associated signaling molecules into a GHR-JAK2 complex, thereby initiating some as yet unidentified signal transduction pathways. These pathways are likely to be shared by other cytokines that activate JAK2.  相似文献   

3.
R? cells are 3T3-like cells derived from mouse embryos in which the insulin-like growth factor I (IGF-I) receptor (IGF-IR) genes have been disrupted by targeted homologous recombination. These cells cannot grow in serum-free medium supplemented by the growth factors that sustain the growth of other 3T3 cell lines, and cannot be transformed by oncogenes that easily transform wild type mouse embryo cells. We have used these cells to study the role of the IGF-IR in the growth and transformation of cells overexpressing the platelet-derived growth factor (PDGF)-b?b? receptor. We report that an overexpressed PDGF-b?b? receptor fails to induce mitogenesis or transformation in cells lacking the IGF-IR, while capable of doing so in cells expressing the IGF-IR. We conclude that the ability of the activated PDGF-b?b? receptor to stimulate cell proliferation and transformation requires a funcitional IGF-IR. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The platelet-derived growth factor (PDGF) alpha- and beta-receptors both mediate a mitogenic response, but only the beta-receptor mediates circular actin reorganization and chemotaxis. The tyrosine kinase domains of the receptors contain noncatalytic inserts of about 100 residues. In order to determine the role of these domains in the differential signaling of the two receptors, we constructed chimeric PDGF receptors and expressed the constructs in porcine aortic endothelial cells. The chimeric receptors were similar to the wild-type receptors in their ability to induce mitogenicity in response to ligand. Examination of receptor-associated substrates by in vitro kinase assays revealed that phosphoproteins of 72 and 110 kilodaltons were associated with the kinase insert of the alpha-receptor, whereas a phosphoprotein of 130 kilodaltons was associated with the kinase insert of the beta-receptor. Actin reorganization in the form of circular membrane ruffling was seen after ligand stimulation of the beta-receptor and the alpha-receptor containing the beta-receptor kinase insert but not after stimulation of the alpha-receptor or the beta-receptor containing the alpha-receptor kinase insert. These data indicate that the PDGF beta-receptor kinase insert has an essential function in the signal transduction pathway leading to circular membrane ruffling.  相似文献   

5.
Hepatocyte growth factor and its receptor are required for malaria infection   总被引:12,自引:0,他引:12  
Plasmodium, the causative agent of malaria, must first infect hepatocytes to initiate a mammalian infection. Sporozoites migrate through several hepatocytes, by breaching their plasma membranes, before infection is finally established in one of them. Here we show that wounding of hepatocytes by sporozoite migration induces the secretion of hepatocyte growth factor (HGF), which renders hepatocytes susceptible to infection. Infection depends on activation of the HGF receptor, MET, by secreted HGF. The malaria parasite exploits MET not as a primary binding site, but as a mediator of signals that make the host cell susceptible to infection. HGF/MET signaling induces rearrangements of the host-cell actin cytoskeleton that are required for the early development of the parasites within hepatocytes. Our findings identify HGF and MET as potential targets for new approaches to malaria prevention.  相似文献   

6.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

7.
To explore the functional role of phospholipase C-gamma1 (PLC-gamma1) in the induction of immediate early genes (IEGs), we have examined the influence of Plcg1 gene disruption on the expression of 14 IEG mRNAs induced by platelet-derived growth factor (PDGF). Plcg1-null embryos were used to produce immortalized fibroblasts genetically deficient in PLC-gamma1 (Null cells), and retroviral infection of those cells was used to derive PLC-gamma1 re-expressing cells (Null+ cells). In terms of PDGF activation of PDGF receptor tyrosine phosphorylation as well as the mitogen-activated protein kinases Erk1 and Erk2, Null and Null+ cells responded equivalently. However, the PDGF-dependent expression of all IEG mRNAs was diminished in cells lacking PLC-gamma1. The expression of FIC, COX-2, KC, JE, and c-fos mRNAs were most strongly compromised, as the stimulation of these genes was reduced by more than 90% in cells lacking PLC-gamma1. The combination of PMA and ionomycin, downstream analogs of PLC activation, did provoke expression of mRNAs for these IEGs in the Null cells. We conclude that PLC-gamma1 is necessary for the maximal expression of many PDGF-induced IEGs and is essential for significant induction of at least five IEGs.  相似文献   

8.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

9.
In the course of our investigation of phospholipase C (PLC)-gamma 1 phosphorylation by using a set of anti-PLC-gamma 1 monoclonal antibodies (P.-G. Suh, S. H. Ryu, W. C. Choi, K.-Y. Lee, and S. G. Rhee, J. Biol. Chem. 263:14497-14504, 1988), we found that some of these antibodies directly recognize a 47-kDa protein. We show here that this 47-kDa protein is identical to the SH2/SH3-containing protein Nck (J. M. Lehmann, G. Riethmuller, and J. P. Johnson, Nucleic Acids Res. 18:1048, 1990). Nck was found to be constitutively phosphorylated on serine in resting NIH 3T3 cells. Platelet-derived growth factor (PDGF) treatment led to increased Nck phosphorylation on both tyrosine and serine. Nck was also found to be phosphorylated on tyrosine in epidermal growth factor (EGF)-treated A431 cells and in v-Src-transformed NIH 3T3 cells. Multiple sites of serine phosphorylation were detected in Nck from resting cells, and no novel sites were found upon PDGF or EGF treatment. A single major tyrosine phosphorylation site was found in Nck in both PDGF- and EGF-treated cells and in v-Src-transformed cells. This same tyrosine was phosphorylated in vitro by purified PDGF and EGF receptors and also by pp60c-src. We compared the phosphorylation of Nck and PLC-gamma 1 in several cell lines transformed by oncogenes with different modes of transformation. Although PLC-gamma 1 and Nck have significant amino acid identity, particularly in their SH3 regions, and both associate with growth factor receptors in a ligand-dependent manner, they were not always phosphorylated on tyrosine in a coincident manner.  相似文献   

10.
11.
12.
The SH3 binding protein, 3BP-1, was originally cloned as a partial cDNA from an expression library using the Abl SH3 domain as a probe. In addition to an SH3 binding domain, 3BP-1 displayed homology to a class of GTPase activating proteins (GAPs) active against Rac and Rho proteins. We report here a full length cDNA of 3BP-1 which extends the homology to GAP proteins previously noted. 3BP-1 functions in vitro as a GAP with a specificity for Rac-related G proteins. Microinjection of the 3BP-1 protein into serum-starved fibroblasts produces an inhibition of platelet-derived growth factor (PDGF)-induced membrane ruffling mediated by Rac. Co-injection of 3BP-1 with an activated Rac mutant that is unresponsive to GAPs, counter-acts this inhibition. 3BP-1 does not show in vitro activity towards Rho and, in agreement with this finding, microinjection of 3BP-1 into fibroblasts has no effect on lysophosphatidic acid (LPA)-induced stress fiber assembly mediated by Rho. Thus 3BP-1 is a new and specific Rac GAP that can act in cells to counter Rac-mediated membrane ruffling. How its SH3 binding site interacts with its GAP activity remains to be understood.  相似文献   

13.
Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites.  相似文献   

14.
Fowler CJ  Hammarsten P  Bergh A 《PloS one》2010,5(12):e15205

Background

In cultured prostate cancer cells, down-regulation of epidermal growth factor receptor (EGFR) has been implicated in mediating the antiproliferative effect of the endogenous cannabinoid (CB) ligand anandamide. Using a well-characterised cohort of prostate cancer patients, we have previously reported that expression levels of phosphorylated EGFR (pEGFR-IR) and CB1 receptor (CB1IR) in tumour tissue at diagnosis are markers of disease-specific survival, but it is not known whether the two markers interact in terms of their influence on disease severity at diagnosis and disease outcome.

Methodology/Principal Findings

Data from a cohort of 419 patients who were diagnosed with prostate cancer at transurethral resection for voiding difficulties was used. Scores for both tumour CB1IR and pEGFR-IR were available in the database. Of these, 235 had been followed by expectancy until the appearance of metastases. For patients scored for both parameters, Cox proportional-hazards regression analyses using optimal cut-off scores indicated that the two measures provided additional diagnostic information not only to each other, but to that provided by the tumour stage and the Gleason score. When the cases were divided into subgroups on the basis of these cut-off scores, the patients with both CB1IR and pEGFR-IR scores above their cut-off had a poorer disease-specific survival and showed a more severe pathology at diagnosis than patients with high pEGFR-IR scores but with CB1IR scores below the cut-off.

Conclusions/Significance

These data indicate that a high tumour CB1 receptor expression at diagnosis augments the deleterious effects of a high pEGFR expression upon disease-specific survival.  相似文献   

15.
Accumulating evidence suggests that receptor protein-tyrosine kinases, like the platelet-derived growth factor receptor-beta (PDGFRbeta) and epidermal growth factor receptor (EGFR), may be desensitized by serine/threonine kinases. One such kinase, G protein-coupled receptor kinase-2 (GRK2), is known to mediate agonist-dependent phosphorylation and desensitization of multiple heptahelical receptors. In testing whether GRK2 could phosphorylate and desensitize the PDGFRbeta, we first found by phosphoamino acid analysis that cells expressing GRK2 could serine-phosphorylate the PDGFRbeta in an agonist-dependent manner. Augmentation or inhibition of GRK2 activity in cells, respectively, reduced or enhanced tyrosine phosphorylation of the PDGFRbeta but not the EGFR. Either overexpressed in cells or as a purified protein, GRK2 demonstrated agonist-promoted serine phosphorylation of the PDGFRbeta and, unexpectedly, the EGFR as well. Because GRK2 did not phosphorylate a kinase-dead (K634R) PDGFRbeta mutant, GRK2-mediated PDGFRbeta phosphorylation required receptor tyrosine kinase activity, as does PDGFRbeta ubiquitination. Agonist-induced ubiquitination of the PDGFRbeta, but not the EGFR, was enhanced in cells overexpressing GRK2. Nevertheless, GRK2 overexpression did not augment PDGFRbeta down-regulation. Like the vast majority of GRK2 substrates, the PDGFRbeta, but not the EGFR, activated heterotrimeric G proteins allosterically in membranes from cells expressing physiologic protein levels. We conclude that GRK2 can phosphorylate and desensitize the PDGFRbeta, perhaps through mechanisms related to receptor ubiquitination. Specificity of GRK2 for receptor protein-tyrosine kinases, expressed at physiologic levels, may be determined by the ability of these receptors to activate heterotrimeric G proteins, among other factors.  相似文献   

16.
This study, conducted on NIH3T3 cells, demonstrates that GSH depletion obtained by buthionine sulfoximine (BSO) treatment does not affect platelet-derived growth-factor receptor (PDGFr) autophosphorylation or cell protein phosphorylation induced by exogenous addition of H2O2, while it does decrease tyrosine phosphorylation obtained by PDGF stimulation. This last effect seems due to the lack of H2O2 generation; for the first time a relation between intracellular GSH content and H2O2 production induced by PDGF has been demonstrated. Therefore, changes of GSH levels can affect the early events of the PDGFr signal pathways by redox regulation. It has also demonstrated that in NIH3T3 cells, H2O2 can directly activate tyrosine phosphorylation by a reversible effect with the involvement of SH-group. This H2O2 effect is increased by vanadate and by GSH depleting agent, diethylmaleate, which unlike BSO is able to produce H2O2 as the current study shows.  相似文献   

17.
Claspin is a checkpoint protein involved in ATR (ataxia telangiectasia mutated- and Rad3-related)-dependent Chk1 activation in Xenopus and human cells. In Xenopus, Claspin interacts with Chk1 after DNA damage through a region containing two highly conserved repeats, which becomes phosphorylated during the checkpoint response. Because this region is also conserved in human Claspin, we investigated the regulation and function of these potential phosphorylation sites in human Claspin. We found that Claspin is phosphorylated in vivo at Thr-916 in response to replication stress and UV damage. Mutation of these phosphorylation sites on Claspin inhibited Claspin-Chk1 interaction in vivo, impaired Chk1 activation, and induced premature chromatin condensation in cells, indicating a defect in replication checkpoint. In addition, we found that Thr-916 on Claspin is phosphorylated by Chk1, suggesting that Chk1 regulates Claspin during checkpoint response. These results together indicate that phosphorylation of Claspin repeats in human Claspin is important for Claspin function and the regulation of Claspin-Chk1 interaction in human cells.  相似文献   

18.
Summary Purified heparin-binding growth factor-1 (HBGF-1) stimulated low density lipoprotein binding, internalization, and degradation in isolated human adult arterial smooth muscle cells. Exposure of quiescent cells to HBGF-1 in serum-free, defined medium increased both low density lipoprotein (LDL) receptor activity and de novo cholesterol biosynthesis. Both events preceded the onset of DNA synthesis by 6 to 9 h. HBGF-1 acted additively with platelet-derived growth factor (PDGF) to maximally stimulate cell surface LDL receptor binding activity and DNA synthesis in the smooth muscle cells. The presence of LDL was required for maximal mitogenic activity of HBGF-1 and PDGF. In the presence of LDL, growth factor-stimulated, proliferating human smooth muscle cells accumulated cholesterol ester and triglycerides. The results suggest that HBGF-1, PDGF, and LDL act together to promote the maximal proliferation of smooth muscle cells in culture. Chronic exposure to the three growth promoters may contribute to the smooth muscle cell hyperplasia and lipid accumulation observed in atherosclerotic lesions. This work was supported by the National Cancer Institute grants CA 37589 and HD 03275, National Council for Tobacco Research grant 1718, and a grant from RJR Nabisco, Inc.  相似文献   

19.
Platelet-derived growth factor (PDGF) causes an acute decrease in the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an increase in the phosphorylation state of the EGF receptor at threonine654. The hypothesis that PDGF action to regulate the EGF receptor is mediated by the activation of protein kinase C and the subsequent phosphorylation of EGF receptor threonine654 was tested. The human receptors for PDGF and EGF were expressed in Chinese hamster ovary cells that lack expression of endogenous receptors for these growth factors. The heterologous regulation of the EGF receptor by PDGF was reconstituted in cells expressing [Thr654]EGF receptors or [Ala654]EGF receptors. PDGF action was also observed in phorbol ester down-regulated cells that lack detectable protein kinase C activity. Together these data indicate that neither protein kinase C nor the phosphorylation of EGF receptor threonine654 is required for the regulation of the apparent affinity of the EGF receptor by PDGF.  相似文献   

20.
M R Eccles 《Gene》1991,108(2):285-288
The BALB/c mouse DNA was analyzed by field-inversion gel electrophoresis to determine the orientation and distance between the beta-platelet-derived growth factor receptor-encoding gene (Pdgfr) and the colony-stimulating factor 1 receptor-encoding gene (Csfmr). It was found that the 5' portion of the Pdgfr gene was cleaved by the enzyme ClaI into two fragments. The 425-kb fragment hybridized with a 3' Pdgfr and a 5' Csfmr probe. This result shows that the Csfmr gene is 3' relative to the Pdgfr gene, and suggests that the Pdgfr and Csfmr genes are physically linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号