首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular background of many loci affecting coat colour inheritance in cattle is still incompletely characterized, although it is known that coat colour results from the joint effects of several loci, e.g. agouti, extension and dilution. Dilution alleles are responsible for a dilution effect on the original coat colour of an individual, which is determined by the agouti and extension loci. Different loci affecting dilution of pigment are suggested in Charolais (Dc) and Simmental (Ds). To enable chromosomal mapping of the Dc mutation, 133 animals from an F2 full-sib resource population generated from a cross of Charolais and German Holstein were scored for the coat colour dilution phenotype. Linkage analysis covering all autosomes revealed a significant linkage of the dilution phenotype with microsatellite markers on bovine chromosome 5. No recombination was observed between marker ETH10 and the Dc locus. Positional and functional information identified the bovine silver homolog (SILV) gene as a candidate for the Dc mutation. Results from comparative sequencing of the SILV gene in individuals with different dilution coat colour phenotypes confirmed the presence of a c.64G>A non-synonymous mutation, which had previously been identified in the Charolais breed. The alleles at this locus were associated with coat colour dilution in this study. However, further investigation of colour inheritance within the F2 resource population indicated that a single diallelic mutation in the SILV gene cannot explain the total observed variation of coat colour dilution.  相似文献   

2.
Grey horses are born coloured, turn progressively grey and often develop melanomas late in life. Grey shows an autosomal dominant inheritance and the locus has previously been mapped to horse chromosome 25 (ECA25), around the TXN gene. We have now developed eight new single nucleotide polymorphisms (SNPs) associated with genes on ECA25 using information on the linear order of genes on human chromosome 9q, as well as the human and mouse coding sequences. These SNPs were mapped in relation to the Grey locus using more than 300 progeny from matings between two Swedish Warmblood grey stallions and non-grey mares. Grey was firmly assigned to an interval with flanking markers NANS and ABCA1. This corresponds to a region of approximately 6.9 Mb on human chromosome 9q. Furthermore, no recombination was observed between Grey, TGFBR1 and TMEFF1, the last two being 1.4 Mb apart in human. There are no obvious candidate genes in this region and none of the genes has been associated with pigmentation disorders or melanoma development, suggesting that the grey phenotype is caused by a mutation in a novel gene.  相似文献   

3.
The dominant grey coat colour gene of horses has been mapped using a whole genome scanning approach. Samples from a large half-sibling pedigree of Thoroughbred horses were utilized in order to map the grey coat colour locus, G. Multiplex groups of microsatellite markers were developed and used to efficiently screen the horse genome at a resolution of approximately 22 cM, based on an estimated map length for the horse genome of 2720 cM. The grey gene was assigned to chromosome 25 (ECA25), one of the smaller acrocentric horse chromosomes. Based on the current state of knowledge of conserved synteny and coat colour genetics in other mammalian species, there are no obvious candidate genes for the grey gene in the region.  相似文献   

4.
In horses, basic colours such as bay or chestnut may be partially diluted to buckskin and palomino, or extremely diluted to cream, a nearly white colour with pink skin and blue eyes. This dilution is expected to be controlled by one gene and we used both candidate gene and positional cloning strategies to identify the "cream mutation". A horse panel including reference colours was established and typed for different markers within or in the neighbourhood of two candidate genes. Our data suggest that the causal mutation, a G to A transition, is localised in exon 2 of the MATP gene leading to an aspartic acid to asparagine substitution in the encoded protein. This conserved mutation was also described in mice and humans, but not in medaka.  相似文献   

5.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   

6.
The progressive loss of colour in the hair of grey horses is controlled by a dominantly inherited allele at the Grey locus (GG). In this study, two paternal Quarter Horse (QH) families segregating for the GG allele were genotyped with a set of 101 microsatellite markers spanning the 31 autosomes and the X chromosome. This genome scan demonstrated linkage of Grey to COR018 (RF=0.02, LOD=12.04) on horse chromosome 25 (ECA25). Further chromosome-specific analysis of seven total QH families confirmed the linkage of Grey to a group of ECA25 markers and the map order of NVHEQ43-(0.24)-UCDEQ405-(0.09)-COR080-(0.05)-GREY-(0.14)-UCDEQ464 was produced. Although G was found to be linked to TXN and COR018 in the chromosome-specific analysis, the data were not sufficiently informative to place either marker on our ECA25 map with significant LODs. Our results excluded the equine tyrosinase related protein 1 (TYRP1) and melanocyte protein 17 (Pmel17) genes as possible candidates for the grey phenotype in horses.  相似文献   

7.
A method to quantify the contribution of subpopulations to genetic diversity in the whole population was assessed using pedigree information. The standardization of between- and within-subpopulation mean coancestries was developed to account for the different coat colour subpopulation sizes in the Spanish Purebred (SPB) horse population. The data included 166264 horses registered in the SPB Studbook. Animals born in the past 11 years (1996 to 2006) were selected as the 'reference population' and were grouped according to coat colour into eight subpopulations: grey (64 836 animals), bay (33 633), black (9414), chestnut (1243), buckskin (433), roan (107), isabella (57) and white (37). Contributions to the total genetic diversity were first assessed in the existing subpopulations and later compared with two scenarios with equal subpopulation size, one with the mean population size (13 710) and another with a low population size (100). Ancestor analysis revealed a very similar origin for the different groups, except for six ancestors that were only present in one of the groups likely to be responsible for the corresponding colour. The coancestry matrix showed a close genetic relationship between the bay and chestnut subpopulations. Before adjustment, Nei's minimum distance showed a lack of differentiation among subpopulations (particularly among the black, chestnut and bay subpopulations) except for isabella and white individuals, whereas after adjustment, white, roan and grey individuals appeared less differentiated. Standardization showed that balancing coat colours would contribute preserving the genetic diversity of the breed. The global genetic diversity increased by 12.5% when the subpopulations were size standardized, showing that a progressive increase in minority coats would be profitable for the genetic diversity of this breed. The methodology developed could be useful for the study of the genetic structure of subpopulations with unbalanced sizes and to predict their genetic importance in terms of their contribution to genetic variability.  相似文献   

8.
The appaloosa coat colour pattern of the horse is similar to that caused by the rump-white (Rw) gene in the mouse. In the mouse Rw colour pattern is the result of an inversion involving the proto-oncogene c-kit (KIT). Therefore, we investigated KIT as a candidate gene that encodes the appaloosa coat colour gene (Lp) in horses. KIT plays a critical role in haematopoiesis, gametogenesis, and melanogenesis and encodes a transmembrane tyrosine kinase receptor that belongs to the PDGF/CSF-1/c-KIT receptor subfamily. Half-sib families segregating for Lp were uninformative for a reported polymorphism in KIT. However, KIT is located on horse chromosome 3 close to albumin (ALB), serum carboxylesterase (ES), vitamin D-binding protein (GC) and microsatellite markers ASB23, LEX007, LEX57, and UCDEQ437. Indeed, KIT and ASB23 were localized to ECA3q21-22.1 and 3q22.1-22.3, respectively, by fluorescent in situ hybridization. Family studies were conducted to investigate linkage of Lp to these markers using eight half-sib families in which Appaloosa stallions were mated to solid coloured mares. Linkage of Lp to the chromosome region containing ES, ALB, GC, ASB23, UCDEQ437, LEX57, and LEX007 was investigated by a multipoint linkage analysis using the computer program GENEHUNTER. LOD scores over the interval under investigation ranged from -4.28 to -12.48, with a score of -12.48 at the location for ASB23. Therefore, it was concluded that appaloosa (Lp) is not linked to any of the tested markers on ECA3, and thus Lp is unlikely to be the product of KIT.  相似文献   

9.
Assignment of the appaloosa coat colour gene (LP) to equine chromosome 1   总被引:1,自引:0,他引:1  
A single autosomal dominant locus, leopard complex (LP) controls the presence of appaloosa pigmentation patterns in the horse. The causative gene for LP is unknown. This study was undertaken to map LP in the horse. Two paternal half sib families segregating for the LP locus and including a total of 47 offspring were used to perform a genome scan which localized LP to horse chromosome 1 (ECA1). LP was linked to ASB08 (LOD = 9.99 at Theta = 0.02) and AHT21 (LOD = 5.03 at Theta = 0.14). To refine the map position of LP, eight microsatellite markers on ECA1 (UM041, LEX77, 1CA41, TKY374, COR046, 1CA32, 1CA43, and TKY002) were analysed in the two half sib families. Results from this linkage analysis showed LP was located in the interval between ASB08 and 1CA43. Tight junction protein (TJP1), which lies within the LP interval on ECA1, was used to determine the homologous chromosomes in humans (HSA15) and mice (mouse chromosome 7). We propose that the pink eyed dilution (p) gene and transient receptor potential cation channel subfamily M, member 1 (TRPM1) are positional candidate genes for LP.  相似文献   

10.
11.
Gene frequencies of coat colour and horn types were assessed in 22 Nordic cattle breeds in a project aimed at establishing genetic profiles of the breeds under study. The coat colour loci yielding information on genetic variation were: extension, agouti, spotting, brindle, dun dilution and colour sided. The polled locus was assessed for two alleles. A profound variation between breeds was observed in the frequencies of both colour and horn alleles, with the older breeds generally showing greater variation in observed colour, horn types and segregating alleles than the modern breeds. The correspondence between the present genetic distance matrix and previous molecular marker distance matrices was low (r = 0.08 – 0.12). The branching pattern of a neighbour-joining tree disagreed to some extent with the molecular data structure. The current data indicates that 70% of the total genetic variation could be explained by differences between the breeds, suggesting a much greater breed differentiation than typically found at protein and microsatellite loci. The marked differentiation of the cattle breeds and observed disagreements with the results from the previous molecular data in the topology of the phylogenetic trees are most likely a result of selection on phenotypic characters analysed in this study.  相似文献   

12.
Here we have tested the hypothesis of association between different levels of agouti signalling peptide (ASIP) mRNA and the recessive black coat colour in the rare Xalda breed of sheep. To deal with this task, we first tested the possible action of both the dominant black extension allele (E(D)) and a 5-bp deletion (X99692:c.100_104del; A(del)) in the ovine ASIP coding sequence on the black coat colour pattern in 188 Xalda individuals. The E(D) allele was not present in the sample and only 11 individuals were homozygous for the A(del)ASIP allele. All Xalda individuals carrying the A(del)/A(del) genotype were phenotypically black. However, most black-coated individuals (109 out of 120) were not homozygous for the 5-bp deletion, thus rejecting the A(del)/A(del) genotype as the sole cause of recessive black coat colour in sheep. Differences in expression of ASIP mRNA were assessed via RT-PCR in 14 black-coated and 10 white-coated Xalda individuals showing different ASIP genotypes (A(wt)/A(wt), A(wt)/A(del) and A(del)/A(del)). Levels of expression in black animals were significantly (P < 0.0001) lower than those assessed for white-coated individuals. However, the ASIP genotype did not influence the ASIP mRNA level of expression. The consistency of these findings with those recently reported in humans is discussed, and the need to isolate the promoter region of ovine ASIP to obtain further evidence for a role of ASIP in recessive black ovine pigmentation is pointed out.  相似文献   

13.
We sequenced almost the complete coding region of the MC1R gene in several domestic rabbits (Oryctolagus cuniculus) and identified four alleles: two wild-type alleles differing by two synonymous single nucleotide polymorphisms (c.333A>G;c.555T>C), one allele with a 30-nucleotide in-frame deletion (c.304_333del30) and one allele with a 6-nucleotide in-frame deletion (c.280_285del6). A polymerase chain reaction-based protocol was used to distinguish the wild-type alleles from the other two alleles in 263 rabbits belonging to 37 breeds or strains. All red/fawn/yellow rabbits were homozygous for the c.304_333del30 allele. This allele represents the recessive e allele at the extension locus identified through pioneering genetic studies in this species. All Californian, Checkered, Giant White and New Zealand White rabbits were homozygous for allele c.280_285del6, which was also observed in the heterozygous condition in a few other breeds. Black coat colour is part of the standard colour in Californian and Checkered breeds, in contrast to the two albino breeds, Giant White and New Zealand White. Following the nomenclature established for the rabbit extension locus, the c.280_285del6 allele, which is dominant over c.304_333del30, may be allele E(D) or allele E(S).  相似文献   

14.
Kit ligand (KITLG) is the ligand for the type III receptor tyrosine kinase KIT. Studies of the KIT/KITLG pathway in a number of mammalian species have shown that it is important for the development of stem cell populations in haematopoietic tissues, germ cells in reproductive organs and the embryonic migrating melanoblasts that give rise to melanocytes. Consequently, mutations in the pathway may result in a range of defects including anaemia, sterility and de-pigmentation. The cDNA sequence of the porcine KITLG gene has been reported previously, and is an attractive candidate locus for moderating coat colour in pigs. In this paper we report the gene structure and physical mapping of the porcine gene. We also report the identification of polymorphisms in the gene, one of which was used to confirm linkage to chromosome 5. Preliminary RNA expression studies using a panel of tissues have shown that in addition to the known variant lacking exon 6, there is alternative splicing of exon 4. However, little evidence was found for the KITLG gene being linked to variation in colour in a Meishan x Large White cross.  相似文献   

15.
I C Arnold  J Bouw 《Animal genetics》1990,21(2):149-151
A study on linkage in dogs has been made on the basis of comparable studies in other mammal species. In a breeding experiment one dog was mated to 14 bitches. The dog was heterozygous for the plasma esterase locus (Es-1) and the extension locus (E) for coat colour. The 14 bitches, homozygous for both loci, produced a total of 96 offspring. The recombination distance between the loci is calculated to be 34.4 +/- 4.8 cM. The basis for homology between species for the two loci has been discussed.  相似文献   

16.
17.
Haase B  Jude R  Brooks SA  Leeb T 《Animal genetics》2008,39(3):306-309
The tobiano white-spotting pattern is one of several known depigmentation phenotypes in horses and is desired by many horse breeders and owners. The tobiano spotting phenotype is inherited as an autosomal dominant trait. Horses that are heterozygous or homozygous for the tobiano allele ( To ) are phenotypically indistinguishable. A SNP associated with To had previously been identified in intron 13 of the equine KIT gene and was used for an indirect gene test. The test was useful in several horse breeds. However, genotyping this sequence variant in the Lewitzer horse breed revealed that 14% of horses with the tobiano pattern did not show the polymorphism in intron 13 and consequently the test was not useful to identify putative homozygotes for To within this breed. Speculations were raised that an independent mutation might cause the tobiano spotting pattern in this breed. Recently, the putative causative mutation for To was described as a large chromosomal inversion on equine chromosome 3. One of the inversion breakpoints is approximately 70 kb downstream of the KIT gene and probably disrupts a regulatory element of the KIT gene. We obtained genotypes for the intron 13 SNP and the chromosomal inversion for 204 tobiano spotted horses and 24 control animals of several breeds. The genotyping data confirmed that the chromosomal inversion was perfectly associated with the To allele in all investigated horses. Therefore, the new test is suitable to discriminate heterozygous To/+ and homozygous To/To horses in the investigated breeds.  相似文献   

18.
The colour locus historically referred to as C in the horse is linked to microsatellites markers on horse chromosome 21. Preliminary results demonstrated linkage of Ccr, thought to be the cream dilution variant of the C locus, to HTG10. An analysis of horse chromosome 21 using additional families confirmed and established a group of markers linked to Ccr. This work also improved the resolution of previously reported linkage maps for this chromosome. Linkage analysis unambiguously produced the map order: SGCV16-(19.1 cM)-HTG10-(3.8 cM)-LEX60/COR73-(1.3 cM)-COR68-(4.5 cM)- Ccr-(11.9 cM)-LEX31. Comparative and synteny data suggested that the horse C locus is not tyrosinase (TYR).  相似文献   

19.
We have examined the phenotype of different KIT genotypes with regard to coat colour and several blood parameters (erythrocyte numbers and measures, total and differential leucocyte numbers, haematocrit and haemoglobin levels and serum components). The effect of two different iron supplement regimes (one or two iron injections) on the blood parameters was also examined. For a total of 184 cross-bred piglets (different combinations of Hampshire, Landrace and Yorkshire) blood parameters were measured four times during their first month of life, and the KIT genotypes of these and 70 additional cross-bred piglets were determined. Eight different KIT genotypes were identified, which confirms the large allelic diversity at the KIT locus in commercial pig populations. The results showed that pigs with different KIT genotypes differ both in coat colour and in haematological parameters. In general, homozygous Dominant white (I/I) piglets had larger erythrocytes with lower haemoglobin concentration, indicating a mild macrocytic anaemia. The effect of two compared with one iron injection was also most pronounced for the I/I piglets.  相似文献   

20.
We analysed levels of genetic differentiation between nine local urban colonies of stray cats using eight coat colour and nine microsatellite loci. Both types of markers revealed a strong differentiation between colonies (FST = 0.15 and 0.09 for coat colour and microsatellite loci, respectively). Three coat colour loci showed extreme levels of genetic differentiation comparatively to other loci and are strongly suspected to be under divergent selective pressures. Microsatellite loci showed significant heterozygote deficiency within colonies (FIS = 0.14), suggesting that coat colour loci are not appropriate to investigate genetic structure at a fine scale because coat colour allele frequencies are based on Hardy-Weinberg equilibrium. The reported pattern conformed to that predicted from the social structuring of cat colonies: aggressive exclusion of immigrants, inbreeding and very low dispersal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号