首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intensity dependence of auditory evoked potentials (AEPs) recorded epidurally over the primary (AI) and secondary (AII) areas of the auditory cortex was studied in behaving cats during wakefulness, sleep and anesthesia. Four kHz tones of 50, 60, 70, and 80 dB SPL, presented in random order every 2 ± 0.2 s by a bone conductor, elicited clear changes of the AEP amplitudes with increasing stimulus intensity, but individual components displayed different responses curves. AEP components from the AI region showed saturation of their amplitude with stimulus intensity (P13, P34) or no amplitude increase (N19), while amplitude and intensity were linearly related in the AII area. The intensity dependence of the first positive component (P12/P13) was consistently stronger for the AEP recorded from the AI than from the AII area, while later components exhibited no difference between AI and AII. During slow wave sleep, the intensity dependence of this first positive component increased in the two areas, while that of later components decreased. Pentobarbital anesthesia abolished almost all later components and depressed the intensity dependence of the first positive component both in the AI and AII area. These results indicate that (1) clear intensity dependence of AEP exists in the cat auditory cortex and (2) this intensity dependence, especially that of the first positive AEP component, shares functional similarities to the human augmenting/reducing phenomenon in the auditory modality concerning regional differences and sleep-waking cycle.  相似文献   

2.
Experiment 1 elicited the P1, N1, P2, and N2 components of the long latency auditory evoked potential (AEP) using a 1000 Hz tone presented at 30, 50, or 70 dB SPL and 1-, 3-, or 5-second inter-stimulus intervals to assess the relative effects of the combination of these variables on component amplitude and latency. Four blocks of 16 tone presentations each were recorded from each subject to determine if changes in the AEP would occur because of short-term habituation. Both stimulus factors interacted significantly in a systematic fashion for the amplitude measures, with increases in latency also associated with increases in intensity and inter-stimulus interval. Only minor changes across the four trial blocks for either the amplitude or latency measures were observed over the various stimulus presentation conditions. Experiment 2 employed the same tone stimulus presented at 50 dB SPL and a 3-second inter-stimulus interval. Eight blocks of 64 trials were recorded from each subject on each day for four days to investigate long-term habituation effects. No substantial changes in any of the component amplitudes or latencies were obtained across the 32 trial blocks. It was concluded that intensity and inter-stimulus interval interact to determine AEP amplitude as well as latency values and that the constituent components do not change appreciably with repeated stimulus presentations, even after several days.  相似文献   

3.
1. Averaged acoustic-evoked potential (AEPs) in the medulla and midbrain were recorded, as were changes in heart rate, indicating arousal, to a previous non-acoustic priming stimulus. 2. Useful AEP measures were amplitude of the early biphasic wave (less than 10 msec) in medulla and amplitude and duration of this wave in midbrain. 3. There was a negative regression of heart rate and medullary AEP amplitude especially evident for a 2 sec light stimulus. Decreased AEP amplitude in both regions was induced by water movement and an increase in midbrain AEP duration by the tactile stimulus. 4. Arousal effects even on these early AEP measures are specific to the form of arousing stimulus.  相似文献   

4.
Event-related potentials (ERPs) evoked by key stimuli informing a subject about the forthcoming recognition of the global or local level of a hierarchical test figure were analyzed in 7-year-old children with different levels of maturity of the regulatory brain systems. Differences in both the initial ERP components P1, N1, and P2 (which reflect the analysis of the sensory characteristics and significance of a key stimulus) and the late components N3, Pc, and Nc (which reflect the preparation for the recognition of a subsequent test figure) were found. It was shown that, in children with frontal-thalamic regulatory system immaturity (FTRSI), the amplitude of the ERP component N1 is decreased in the caudal areas. In children with an immature bottom-up activation system, a decrease in the amplitude of initial ERP components in the caudal areas was observed in a broader time interval in components P1, N1, and P2. As compared to the control groups of children, in children with immature frontal-thalamic structures, components N3, Pc, and Nc were different in both the caudal and precentral areas. In children with immature lower brainstem activation structures, the late ERP components were different, predominantly, in the parietal and temporo-parieto-occipital areas. Comparison of ERPs in response to global and local key stimuli in children of the control group demonstrated a clear-cut temporal and topographical organization in the period of preparation for subsequent recognition of a prescribed level of the test stimulus: the earlier preparation stages were associated with component N3 in the parietal and temporo-parieto-occipital areas, whereas later stages were associated with Pc changes in the frontal areas. In children with FTRSI, changes in the late components in the caudal areas were poorly expressed and their topographical organization (characteristic of the control group) was absent; the involvement of the frontal areas in the late stages of the key stimulus analysis was restricted. These findings may give grounds to suggest the significance of the frontal-thalamic system in the organization of the response to an expected stimulus. In children with immature lower brainstem activation structures, the type of the key stimulus was reflected in the late ERP components in a diffuse way.  相似文献   

5.
Average evoked potentials (AEP) were recorded in practically healthy subjects to "meaningless" figures and letters, presented to different halves of the visual field. Analysis of the amplitudes of AEP late components to verbal and non-verbal stimuli reveals hemispheric asymmetry. A higher amplitude of the late positive evoked response (P300) to a "direct" stimulation both by verbal and non-verbal stimuli (in the contralateral field of vision) is recorded in the left hemisphere than in the right one. Similar stimulation of the right hemisphere does not reveal sucha difference. In the left hemisphere the P300 wave is of a clearly greater amplitude to a "direct" stimulation (contralateral visual field) than to an "indirect" one (ipsilateral visual field), regardless of the nature of the stimulus. No such difference is observed in the right hemisphere. The magnitude of the late negative wave (component N200) to non-verbal stimuli is greater in the right hemisphere both in response to "direct" and "indirect" stimulations. No intrahemispheric difference has been found in the amplitude of late evoked responses of the cerebral cortex to verbal and non-verbal stimuli.  相似文献   

6.
In children of 7-8 and 9-10 years old, the ERP components were studied by comparing two non-verbalized visuo-spatial stimuli shown in succession with 1.5-1.8 s interstimulus interval. We found the age-related differences in the specific way (and the extent to which) the cortical areas were involved into the processes of the reference stimulus (the first stimulus in the pair) encoding and into the process of comparing the memory trace against the test stimulus. In both age groups, the sensory-specific N1 ERP component in the visual cortices had larger amplitude during working memory than during free observation. Age-related differences in the processing of the sensory-specific parameters of a stimulus are most pronounced in ERP to the test stimulus: in children of 9-10, the amplitude of N1 component increased significantly in all caudal leads following the earlier increase in P1 component in the inferior temporal and occipital areas. In the children of that age, unlike children of 7-8, the early involvement of ventro-lateral prefrontal cortex becomes apparent. In that area an increase of positivity confined to 100-200 ms post-stimulus is observed. Substantial inter-group differences are observed in the late ERP components that are related to cognitive operations. In children of 7-8, presenting both reference and test stimuli causes a significant increase in the amplitude of late positive complex (LPC) in caudal leads with maximal increase being observed in parietal areas at 300-800 ms post-stimulus. In children of 9-10, one can see some adult-like features of the late ERP components during different stages of the working memory process: in fronto-central areas N400 component increases in response to the reference stimulus, whereas LPC increases in response to the test stimulus. The data reported in this work show that the almost mature functional organization of working memory is already in place at the age of 9-10. However, the extent of the prefrontal cortex (especially its dorsal areas) involvement does not yet match the level of maturity.  相似文献   

7.
Functional Organization of the Brain during the Operation of Working Memory   总被引:3,自引:1,他引:2  
Event-related potentials (ERPs) recorded from various cortical areas during matching of two consecutive pictures were analyzed. Reflecting the process of trace fixation, the ERP to the reference stimulus was characterized by an increase in components P150 and P300 in the occipital and temporo-parieto-occipital areas and components N300 and N400 in the precentral areas as compared with the ERP elicited by the warning stimulus. The ERP to the test stimulus, which reflected trace retrieval and matching with current information, was characterized by a generalized increase in the late positive complex in the interval 300–600 ms. Similarity and/or dissimilarity of the test and reference stimuli was reflected in the parameters of the ERP to the test stimulus. The results testify to the difference in functional and topographic organization of the brain cortex at the initial and late stages of operation of the working memory.  相似文献   

8.
Sensory gating is a process in which the brain’s response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject’s behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP) can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM) sleep and Non-REM (NREM) sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.  相似文献   

9.
1. Changes in EEG power spectrum of carp to a priming non-acoustic stimulus followed by acoustic clicks were compared to those due to acoustic clicks delivered alone. Recordings were made from the telencephalon, midbrain and medulla. Acoustic evoked potentials (AEPs) to the clicks were also recorded. 2. EEG power changes to non-acoustic stimuli occurred over the whole 1-40 Hz frequency range and were regionally specific and consistent. 3. The changes in the EEG midfrequency 12-24 Hz power spectrum to non-acoustic stimuli were significantly correlated with changes in the AEP to subsequent clicks. An elevated medullary AEP amplitude and reduced duration were correlated with increased medullary EEG power and increased midbrain AEP duration. 4. Telencephalic EEG power changes were inversely related to changes in medullary and midbrain AEP amplitude.  相似文献   

10.
The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1.  相似文献   

11.
Parameters of visual search (reaction time, mistakes) were investigated in 11 young healthy volunteers, under changing parameters of target symbol (form, color and location) in surroundings of white distracters (flankers). In 6 cortical leads: P3, P4, T3, T4, T5, T6, monopolar event-related potentials (ERPs) were registered and analyzed for the late endogenous components: N2, P3, because these very components have changed under verifying of search (so called late selection). In the hard search (similar target and distractors) the increase of search time was accompanied by the delay of P3 component and diminishing of its amplitude. The definite (the knowledge of) target position resulted by the decrease search time and decrease of P3 wave latency as compared with situation of uncertainty in respect to the position of target. Alteration of the target stimulus colour were led to abolishment (cancel) of inhibition effect of distracters: parameters of IRP have not differed from parameters of ERPs to solid target stimulus without the flankers. A high correlation of search time and parameters of P3 wave was revealed. Changes of IRPs in different kinds of search were similar in parietal and temporal leads. This suggests that the parietal and temporal cortical areas function as united system, under search of target in environment.  相似文献   

12.
The physiology of mechanoreceptive lateral line areas was investigated in the thornback guitarfish, Platyrhinoidis triseriata, from medulla to telecephalon, using averaged evoked potentials (AEPs) and unit responses as windows to brain functions. Responses were analysed with respect to frequency sensitivity, intensity functions, influence of stimulus repetition rate, response latency, receptive field (RF) organization and multimodal interaction. 1. Following a quasi-natural vibrating sphere stimulus, neural responses were recorded in the medullary medial octavolateralis nucleus (MON), the dorsal (DMN) and anterior (AN) nucleus of the mesencephalic nuclear complex, the diencephalic lateral tuberal nucleus (LTN), and a telencephalic area which may correspond to the medial pallium (Figs. 2, 3, 13, 14, 15, 16). 2. Within the test range of 6.5-200 Hz all lateral line areas investigated responded to minute water vibrations. Best frequencies (in terms of displacement) were between 75 and 200 Hz with threshold values for AEPs as low as 0.005 microns peak-to-peak (p-p) water displacement calculated at the skin surface (Fig. 6). 3. AEP-responses to a vibrating sphere stimulus recorded in the MON are tonic or phasic-tonic, i.e., responses are strongest at stimulus onset but last for the whole stimulus duration in form of a frequency following response (Fig. 3). DMN and AN responses are phasic or phasic-tonic. Units recorded in the MON are phase coupled to the stimulus, those recorded in the DMN, AN or LTN are usually not (Figs. 5, 8, 9). Diencephalic LTN and telencephalic lateral line responses (AEPs) often are purely phasic. However, in the diencephalic LTN tonic and/or off-responses can be recorded (Fig. 11). 4. For the frequencies 25, 50, and 100 Hz, the dynamic intensity range of lateral line areas varies from 12.8 to at least 91.6 dB (AEP) respectively 8.9 and 92 dB (few unit and single unit recordings) (Fig. 7). 5. Mesencephalic, diencephalic, and telecephalic RFs, based on the evaluation of AEPs or multiunit activity (MUA), are usually contralateral (AN and LTN) or ipsi- and contralateral (telencephalon) and often complex (Figs. 10, 12, 16). 6. In many cases no obvious interactions between different modalities (vibrating sphere, electric field stimulus, and/or a light flash) were seen. However, some recording sites in the mesencephalic AN and the diencephalic LTN showed bimodal interactions in that an electric field stimulus decreased or increased the amplitude of a lateral line response and vice versa (Fig. 13 B).  相似文献   

13.
Components of evoked potentials to stimuli differing in size and warning about the necessity of subsequent recognition of an image at the global or local level were analyzed to identify the specific features of selective attention in adults and seven-year-old children. In both age groups, components were found that were related to selective attention aimed at processing a warning stimulus (the P1, N1, and P2 components) and producing a response to the subsequent test stimulus. Both age groups exhibited similar dependences of changes in the P1 component (40–110 and 110–220 ms in the adults and children, respectively) on the type of the warning stimulus. The children displayed a greater increase in the amplitude of the P1 component of the response to the global versus the local key than the adults did. The P1 component is suggested to reflect not only the sensory features of the stimulus but also the selective attention associated with its sensory processing. The amplitude of the P2 component of the response to the global key (190–240 and 330–410 ms in the adults and children, respectively) was higher in both age groups. This component is believed to indicate evaluation of the signal importance of the warning stimulus. In the adults, late components of event-related potentials (ERPs), i.e., P3-N3 (300–450 ms), were associated with the global or local level of recognition of a test hierarchical stimulus that was presented after the key, with the greatest differences in the central and posterior associative areas of the right hemisphere and in the frontocentral areas of the left hemisphere. In the children, the N3 component (530–600 ms) in the left parietal area, as well as the late ERP phases, i.e., Ps (680–950 ms) and Ns (1030–1130 ms), during which the frontal cortical areas are involved in preparing the subsequent response, was shown to depend on the type of the warning stimulus.  相似文献   

14.
We studied visual representation in the parietal cortex by recording whole-scalp neuromagnetic responses to luminance stimuli of varying eccentricities. The stimuli were semicircles (5.5 degrees in radius) presented at horizontal eccentricities from 0 degree to 16 degrees, separately in the right and left hemifields. All stimuli evoked responses in the contralateral occipital and medial parietal areas. The waveforms and distributions of the occipital responses varied with stimulus side (left, right) and eccentricity, whereas the parietal responses were remarkably similar to all stimuli. The equivalent sources of the parietal signals clustered within 1 cm3 in the medial parieto-occipital sulcus and did not differ significantly between the stimuli. The strength of the parietal activation remained practically constant with increasing stimulus eccentricity, suggesting that the visual areas in the parieto-occipital sulcus lack the enhanced foveal representation typical of most other visual areas. This result strengthens our previous suggestion that the medial parieto-occipital sulcus is the human homologue of the monkey V6 complex, characterized by, for example, lack of retinotopy and the absence of relative foveal magnification.  相似文献   

15.
Neuronal activity associated with a conditioned forepaw placing reaction was recorded in the cat's motor cortex locally disinhibited by bicuculline spontaneously diffused from the recording pipette. Electrical stimulation of the parieral cortex (area 5) with 3-5 pulses was used as a conditioned stimulus. In both naive and trained cats, adding of APV (NMDA receptor blocker) led to disappearance of the late (30-120 ms) secondary excitatory responses from the pattern of the neuronal reaction to the parietal stimulation recorded in the motor cortex. At the same time, the APV administration did not change the excitatory reactions (recorded, predominantly, in the deep cortical layers) time-locked to the execution of the conditioned movement. The conditioning resulted in a statistically significant increase in the amplitude and duration of the late secondary responses as well as in a shortening of their latency. In some cases (after a long period of training), the late secondary responses to the conditioned stimulus transformed into paroxysmal epileptiform bursts. A hypothesis is discussed that the increase in synaptic strength of the backward horizontal collaterals of layer-II/III pyramidal neurons is responsible for the learning-related changes in the neuronal reactions in the disinhibited motor cortex.  相似文献   

16.
In accordance with the present views, during sleep, analysis of external stimuli continues at the subconscious level, because the need to estimate the biological significance of external stimuli in order to maintain a flexible contact of a sleeping subject with the environment persists during sleep. It is known that new components of the auditory evoked potentials (AEP) appear as sleep deepens. However, the common procedure of analysis of event-related potentials averaged for a group of subjects has some drawbacks because of the interindividual variability of the event-related potentials. Therefore, an additional analysis of the interindividual variability of the AEP shape and component structure can simplify the detection of individual components of group-averaged AEP at different stages of the slow-wave sleep. The AEPs were recorded in healthy volunteers (n = 26) during falling asleep in the evening from eight EEG derivations (F3, F4, C3, C4, P3, P4, O1, O2) in reference to a linked mastoid electrode. Computer-generated sound stimuli (50 ms-pulses with the frequency of 1000 Hz, 60 dB HL) were presented binaurally through earphones with interstimulus intervals of 20-40 s. Selective summation of AEPs for all the subjects was performed for each stage of the slow-wave sleep individually for each of the eight derivations. It was shown that the account made for interindividual variability of the AEP shape facilitated the identification of individual components of the group-averaged AEP typical of wakefulness (P1, N1, P300) and those which appeared during sleep onset and at different stages of the slow-wave sleep (P2, N350, P450, N550, N900).  相似文献   

17.
Evoked potentials averaged with the help of an electronic computer (AEP) to brief sound stimuli of subthreshold (3–10 dB below the threshold of the signal's audibility), threshold, and superthreshold (10–60 dB above the threshold) intensity were recorded from the vertex and occipital region of the cranium in healthy people. The dynamics of the changes in the AEP with an increase in the intensity of the sound from subthreshold to superthreshold (60 dB) values was shown. The time and amplitude parameters of AEP to imperceptible and perceptible sound stimuli differed significantly. The most constant, and in many cases the only component of the AEP to an imperceptible stimulus was a long-latent, low-amplitude, slow positive oscillation. The participation of the cerebral cortex in the neural mechanisms of reactions to imperceptible sound stimuli is discussed.V. P. Serbskii Central Scientific-Research Institute of Forensic Psychiatry, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 2, pp. 115–122, March–April, 1971.  相似文献   

18.
Evoked potentials (EP) were recorded in the projection and non-projection areas of the cerebral cortex in juveniles in response to exposures of structured visual stimuli with subthreshold and supraliminal durations. The data obtained have shown that recognition of the presented stimulus is attended with intensification of the EP late complex. This effect is most pronouned in the central and frontal parts of the cortex. The Nv component with a 240 to 300 msec latency has a more regular connection with recognition as compared with other components.  相似文献   

19.
1. Averaged evoked potentials (AEP) in response to pulses and sine waves of electric current, either as a homogeneous field or a large dipole field around the fish, have been recorded from the brain in 5 genera of elasmobranchs and 10 genera of siluriform fishes. 2. In the elasmobranchs, AEP's and spike-hash bursts are described from medulla, cerebellum, mesencephalon and telencephalon. A complex sequence of early and late waves is found in each level. Two sets of factors influence the latency and amplitude of the component waves. One is stimulus parameters including intensity, stimulus orientation, sign of the change of current, position of dipole, serial number in the first few cycles of a train as well as interval or frequency of a regular series. Separate component peaks of the complex AEP appear to have different dependencies upon these factors. To sinusoidal stimuli the best response by a certain criterion is at 20--30 Hz in a shark (Carcharhinus), 10--15 Hz in a ray (Potamotrygon); these are much higher than the values based on behavior from previous authors. The lowest threshold, with moderate averaging, was 0.015 muV/cm (= 0.8 nA/cm2) in marine species, less than 50 muV/cm (= 0.7 nA/cm2) in the freshwater ray. 3. The other set of factors determining AEP is brain parameters, including the recording locus, the type of electrode and electrode advance and the state of the brain (anesthesia, etc.). There is evidence of topographic segregation of some stimulus parameters, but mapping was not undertaken. Responsive regions are described in the several brain levels. 4. The best loci for electric AEP are distinct from those for acoustic and photic AEPs. No interaction between these was found. 5. All of the siluriforms tested show electroreception by the criterion of high sensitivity AEP. No obvious specialization was noted among the diverse species, but most were represented by a single experiment. Taken together with the previously known species, the sample of nine families of this large order suggests that this is a general characteristic of the order. 6. The best responses were found in the region of the torus semicircularis and in the lateral lobe. The lowest threshold by the criterion used was less than 0.15 mV/cm (= 2 nA/cm2), but some were nearly 2 mV/cm. Compared to much lower values in Ictalurus, this suggests species differences although part of the difference may be due to failure to record from the optimal locus. The AEP may be useful as a method of suveying for other electroreceptive groups. It is also potentially useful to reveal discriminable parameters of importance, such as dipole position, orientation, polarity and frequency.  相似文献   

20.
Averaged evoked potentials (AEP) to verbal (letters) and nonverbal (random shapes) stimuli exposed in the left and right visual fields were registered in healthy subjects with normal vision. Analysis of the later AEP latencies pointed to asymmetry in the temporal parameters of the interhemispheric interaction. The late AEP latency is shorter in the right hemisphere than in the left hemisphere. The difference is more pronounced in responses to nonverbal stimuli. The earlier development of the evoked potential in the right hemisphere (or the later one in the left hemisphere) accounts for the interhemispheric difference in the temporal parameters of the late AEP components. Comparison of the latency of the component P300 to verbal and nonverbal stimuli presented in the ipsilateral or the contralateral visual fields reveals a transfer of the results of the cortical processing of visual information in the course of interhemispheric interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号