首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cryopreservation induces extensive biophysical and biochemical changes in the membrane of spermatozoa that ultimately decrease the fertility potential of the cells. Sulfhydryl groups of sperm proteins regulate a number of activities of the cells. Qualitative and quantitative analyses of sulfhydryl groups in the sperm membrane were performed by fluorescence microscopy, fluorimetry and electrophoresis. Fluorimetric analysis using 5-iodoacetamidofluoresceine indicated a two-fold increase in the content of sulfhydryl groups in sperm membrane after a freezing/thawing cycle. Electrophoresis of Triton-soluble sperm proteins after labeling with 3-(N-maleimidylpropionyl) biocytin indicated that proteins of 40-65 and 34 kDa range expose more sulfhydryl groups after cooling at 4 degrees C and freezing/thawing. Cryopreservation of spermatozoa changed the distribution pattern of sulfhydryl groups on sperm surface measured with fluorescence microscopy using 5-iodoacetamidofluoresceine. The percentage of spermatozoa labeled at the level of the mid-piece decreased by 50 and 90% after cooling and freezing/thawing, respectively. Spin labeling studies showed a 15% faster rotational diffusion (mobility) of sulfhydryl containing proteins in the membrane of frozen/thawed spermatozoa as compared to that of fresh spermatozoa. Addition of glutathione, reduced (GSH) or oxidized (GSSG), to the cryoprotectant partially prevented the effects of freezing/thawing, such as higher exposure of sulfhydryl groups, changes in the cellular distribution, and enhanced rotational diffusion of sulfhydryl containing proteins of sperm membrane. Addition of GSSG to the cryoprotectant reduced by 35% the loss of motility of spermatozoa undergoing a freezing/thawing cycle. We concluded that cryopreservation perturbs sperm membrane sulfhydryl containing proteins and that these modifications could be partially prevented by the addition of GSSG to the cryopreservation medium.  相似文献   

2.
Sperm activation: role of reactive oxygen species and kinases   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS), such as the superoxide anion (O(2)(-*)), hydrogen peroxide (H(2)O(2)) and nitric oxide (NO*), when generated at low and controlled levels, act as second messengers. ROS regulate sperm capacitation, which is the complex series of changes allowing spermatozoa to bind to the zona pellucida surrounding the oocyte, induce the acrosome reaction (exocytotic event by which proteolytic enzymes are released) and fertilize the oocyte. Capacitating spermatozoa produce controlled amounts of ROS that regulate downstream events: first, the increase in cAMP, protein kinase A (PKA) activation and phosphorylation of PKA substrates (arginine-X-X-serine/threonine motif; 15-30 min); second, the phosphorylation of MEK (extracellular signal regulated kinase [ERK] kinase)-like proteins (30-60 min) and then that of the threonine-glutamate-tyrosine motif (>1 h); finally, the late tyrosine phosphorylation of fibrous sheath proteins (>2 h). Although all these events are ROS-dependent, the regulation by various kinases, protein kinase C, PKA, protein tyrosine kinases, the ERK pathway, etc. is different. ROS also regulate the acquisition of hyperactivated motility and the acrosome reaction by spermatozoa. ROS action is probably mediated via the sulfhydryl/disulfide pair on sperm proteins. Redundancy, cross talk, and multiple systems acting in parallel point to an array of safeguards assuring the timely function of spermatozoa.  相似文献   

3.
Capacitation is an essential process by which spermatozoa acquire fertilizing ability. Reactive oxygen species (ROS), protein kinase A (PKA), protein kinase C (PKC), protein tyrosine kinases (PTKs), and the extracellular signal-regulated protein kinase (ERK or mitogen-activated protein kinase [MAPK]) pathway regulate sperm capacitation. Our aim was to evaluate the phosphorylation of MEK (MAPK kinase or MAP2K) or MEK-like proteins in human sperm capacitation and its modulation by ROS and kinases. Immunoblotting using an anti-phospho-MEK antibody indicated that the phosphorylation of three protein bands (55, 94, and 115 kDa) increased in spermatozoa treated with fetal cord serum ultrafiltrate (FCSu), BSA, or isobutylmethylxanthine plus dibutyryl cAMP as capacitating agents. These phospho-MEK-like proteins are localized along the sperm flagellum. The MEK-inhibitors PD98059 and U126 prevented this phosphorylation, suggesting that these proteins are MEK-like proteins. The ROS scavengers prevented, and the addition of H(2)O(2) or spermine-NONOate (nitric oxide donor) triggered, the increase of phospho-MEK-like proteins. The capacitation-related increases in phospho-MEK-like proteins induced by FCSu, H(2)O(2), and spermine-NONOate were similarly modulated by PKA, PKC, and PTK, suggesting ROS as mediators in this phenomenon. These results indicate that phospho-MEK-like proteins are modulated by ROS and kinases and probably represent an intermediary step between the early events and the late tyrosine phosphorylation associated with capacitation.  相似文献   

4.
This study aimed to demonstrate nitric oxide production by human spermatozoa and to characterize the interaction between nitric oxide and cAMP-related pathway in the control of human sperm capacitation and protein tyrosine phosphorylation. Spermatozoa were incubated in Tyrode's medium with or without bovine serum albumin (BSA), and nitric oxide was measured with the spin trap sodium N-methyl-D-glucamine dithiocarbamate. Under noncapacitating conditions, spermatozoa produced low levels of nitric oxide. However, under capacitating conditions, prominent nitric oxide adduct signals were obtained and a time-dependent increase of nitric oxide production was observed. When spermatozoa were incubated in Tyrode+BSA medium with nitric oxide-releasing compounds, intracellular cAMP concentrations increased to levels higher than those of spermatozoa incubated in Tyrode+BSA alone. In contrast, incubation with nitric oxide synthase inhibitors (N(G)-nitro-L-arginine methyl ester or N(G)-monomethyl L-arginine) decreased intracellular sperm cAMP concentrations. The inhibitory effect observed with N(G)-nitro-L-arginine methyl ester on capacitation and tyrosine phosphorylation of two sperm proteins (105, 81 kDa) was overcome by the presence of cAMP analogs or of a phosphodiesterase inhibitor. These results indicate that nitric oxide is produced by capacitating human spermatozoa and that it may act as a cellular messenger by modulating the cAMP pathway involved in capacitation and protein tyrosine phosphorylation.  相似文献   

5.
Monoclonal antibodies specific for three major plasma membrane (PM) proteins, previously referenced as PM protein 2.0, 4.85 and 5.0, and one specific for an unreferenced PM protein (Mr 80,000) were used with indirect fluorescence microscopy to detect the effects of capacitation on the localization of these PM proteins. In ejaculated or cauda spermatozoa, incubation in the capacitating medium caused the appearance of fluorescence in the flagellum and either a loss of fluorescence on the PM overlying the sperm head (PM proteins of 5.0 and Mr 80,000) or a delocalization of fluorescence on the head PM (PM proteins 2.0 and 4.85). Labelling spermatozoa with divalent antibody and then capacitating them indicated the PM protein 5.0 and that of Mr 80,000 migrated out of the head plasma membrane into the flagellar PM during capacitation. These antigens re-entered the head PM when fresh seminal plasma was added after the capacitation period or when energy metabolism was inhibited by azide. Cytochalasin D, an inhibitor of the polymerization of actin, prevented movement of PM protein 5.0 and that of Mr 80,000 of the head PM into the flagellum during incubation in the capacitation medium and prevented re-entry of these antigens from the flagellum into the head PM after incubation in this medium. Localization changes occurring with capacitation were time-dependent but independent of the method of preparing samples for microscopy. For the major PM proteins 4.85 and 5.0, a much smaller percentage of caput spermatozoa (approximately 20%) showed specific localization changes compared to those of the cauda (approximately 80%). Chelation of Ca2+ inhibited these changes in ejaculated spermatozoa and fresh seminal plasma, added to capacitated spermatozoa, restored the localization pattern characteristic of uncapacitated spermatozoa. These observations suggest that the organization of major proteins in the plasma membrane overlying the sperm head is altered during capacitation. These changes are reversible, are dependent on sperm maturation and also appear to involve actin filament interactions with the plasma membrane.  相似文献   

6.
Second messengers are involved in sperm fertilizing potential, as both motility and the acrosome reaction are influenced by cAMP. Moreover, the activity of cyclic nucleotides is implicated in the appearance of tyrosine phosphorylated sperm proteins, which is associated with capacitation in the mammalian spermatozoa. Nevertheless, the involvement of the cAMP/protein kinase A (PK-A) pathway during pig sperm capacitation may be different from that observed in other mammals. The objective of the present study was to clarify the cAMP/PK-A pathway during the capacitation of porcine spermatozoa and to evaluate this impact on the p32 sperm tyrosine phosphoprotein appearance. The presence of p32 was assessed after incubating fresh pig sperm with IBMX/db-cAMP, H-89, a PK-A inhibitor or bistyrphostin, a tyrosine kinase inhibitor, in capacitating (CM) or non-capacitating conditions (NCM) by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. When pig spermatozoa were incubated in CM supplemented with H-89 (50 microM) or bistyrphostin (1.2 microM), capacitation decreased significantly (P < 0.001). The p32 sperm tyrosine phosphoprotein, previously shown to be associated with capacitation of porcine sperm though not necessarily an end point of this phenomenon, was not modulated by IBMX/db-cAMP (100 microM/1 mM), H-89 (50 microM) nor bistyrphostin (1.2 microM). Our results indicate, therefore, that pig sperm are regulated somewhat differently than as described for other mammals, because although the cAMP/PK-A and tyrosine kinase pathways are involved in capacitation, they do not influence the appearance of p32.  相似文献   

7.
There is a need for methods of rapid and sensitive sperm function assessment. As spermatozoa are not able to fertilize an oocyte before having undergone a series of complex physiological changes collectively called capacitation, it is logical to assess sperm function under fertilizing conditions in vitro. In this study, the responsiveness of sperm to capacitating conditions in vitro was monitored by changes in sperm response to ionophore and by changes in the amount of intracellular calcium ions in stored boar semen. Boar semen was diluted at 32 and 20 degrees C and stored for 24 and 72 h at 16 and 10 degrees C. Ionophore-induced changes and increased intracellular calcium ion content in boar spermatozoa were recorded by flow cytometry and found to progress as a function of time during incubation under capacitating conditions. All responsiveness parameters (increases in proportions of membrane-defective spermatozoa, acrosome-reacted spermatozoa, and cells with high intracellular calcium levels) were shown to be sensitive to subtle physiological changes occurring at low storage temperatures. The initial levels of sperm with a high calcium content were higher in semen stored at 10 degrees C, but the accumulation of internal calcium was lower than in semen stored at 16 degrees C. The loss of membrane integrity and increase in the proportion of acrosome-reacted cells were higher in semen stored at 10 degrees C. Dilution at 20 degrees C had no negative effect on membrane integrity or responsiveness to capacitating conditions. There was no significant difference between semen stored for 24 and 72 h in terms of membrane integrity, acrosome reaction, and intracellular calcium after capacitation treatment. However, dynamics of cell death and acrosome reaction in response to capacitating conditions were somewhat accelerated after 72 h storage, especially in semen stored at 10 degrees C. It can be concluded that the simultaneous use of the sperm membrane responsiveness and kinetic parameters is a sensitive tool for the detection of storage-related membrane changes in boar semen.  相似文献   

8.
BACKGROUND: Spermatozoa acquire active fertilizing competence only after deposition in the female tract and subsequent capacitation. Recent studies on the cellular location of major sperm phosphoproteins suggest that capacitation is associated with tyrosine phosphorylation of proteins exposed on the sperm surface. However, these changes have not yet been quantified objectively. A calcium influx seems to be required for the completion of tyrosine phosphorylation in some species; however, the exact temporal coordination between these processes is still poorly understood. METHODS: Flow cytometry was used to quantify the degree of phosphorylation of the sperm surface proteins by probing with fluorescein isothiocyanate-conjugated anti-phosphotyrosine (pY) antibody raised in mouse. Dynamic changes in other sperm parameters (calcium influx, membrane integrity, and spontaneous acrosome reaction) were assessed to analyze their temporal coordination. RESULTS:: The changes in specific phosphotyrosine (pY) fluorescence signal detected in live, nonpermeabilized boar cell suspensions were biphasic during incubation under capacitating conditions. After 120 min of incubation, the degree of pY fluorescence increased threefold, indicating the changes in proteins exposed on sperm surface. At the same time there was a gradual increase in cytosolic calcium ion levels with the maximal rate at 60 min of incubation. This rate slowed immediately before the onset of the massive rise in tyrosine phosphorylation and decreased by 90% after its completion. The integrity of plasma and acrosome membranes decreased only slowly, illustrating that the changes observed were not due to the process of spontaneous acrosome reaction. CONCLUSIONS: These data provide quantitative evidence for the appearance of tyrosine-phosphorylated proteins on the surface of live boar spermatozoa during capacitation. An exact temporal coordination exists between cytosolic calcium ion content and protein tyrosine phosphorylation under these conditions. This novel approach has the advantage of making possible a precise quantification and kinetic comparison of molecular processes in different cell subpopulations.  相似文献   

9.
Baumber J  Sabeur K  Vo A  Ball BA 《Theriogenology》2003,60(7):1239-1247
The objective of this study was to examine the influence of reactive oxygen species (ROS) on equine sperm capacitation. Motile equine spermatozoa were separated on a discontinuous Percoll gradient, resuspended at 10 x 10(6)ml in Tyrode's medium supplemented with BSA (0.5%) and polyvinyl alcohol (0.5%) and incubated at 39 degrees C for 2h with or without the xanthine (X; 0.1mM)-xanthine oxidase (XO; 0.01 U/ml) system or NADPH (0.25 mM). The importance of hydrogen peroxide or superoxide for capacitation was determined by the addition of catalase (CAT; 150 U/ml) or superoxide dismutase (SOD; 150 U/ml), respectively. Following incubation, acrosomal exocytosis was induced by a 5 min incubation at 39 degrees C with progesterone (3.18 microM), and sperm viability and acrosomal integrity were then determined by staining with Hoechst 33258 and fluoroisothiocyanate-conjugated Pisum sativum agglutin. To examine tyrosine phosphorylation, treatments were subjected to sodium dodecyl sulfate-polyacrylaminde gel electrophoresis (SDS-PAGE) followed by Western blot analysis with the anti-phosphotyrosine antibody (alpha-PY; clone 4G10). Capacitation with the X-XO system or NADPH led to a significant (P<0.0001) increase in live acrosome-reacted spermatozoa compared to controls. The addition of CAT or SOD prevented the increase in live acrosome-reacted spermatozoa associated with X-XO treatment. Incubation with the X-XO system was also associated with a significant (P<0.005) increase in tyrosine phosphorylation when compared to controls, which could be prevented by the addition of CAT but not SOD. This study indicates that ROS can promote equine sperm capacitation and tyrosine phosphorylation, suggesting a physiological role for ROS generation by equine spermatozoa.  相似文献   

10.
To fertilize the oocyte, mammalian spermatozoa must undergo capacitation and acrosome reaction. These events are believed to be associated with various biochemical changes primarily mediated by cAMP, Ca2+ and protein kinases. But the precise signaling mechanisms governing sperm function are not clear. To study this, we used pentoxifylline (PF), a sperm motility stimulant and a cAMP-phosphodiesterase inhibitor, during capacitation and acrosome reaction of hamster spermatozoa. PF induced an early onset of sperm capacitation and its action involved modulation of sperm cell signaling molecules viz, cAMP, [Ca2+]i and protein kinases. The PF-induced capacitation was associated with an early and increased total protein phosphorylation coupled with changes in the levels of reactive oxygen species. Protein kinase (PK)-A inhibitor (H-89) completely inhibited phosphorylation of a 29 kDa protein while PK-C inhibitor (staurosporine) did not inhibit phosphorylation. Interestingly, PF induced protein tyrosine phosphorylation of a set of proteins (Mr 45-80 K) and a greater proportion of PF-treated spermatozoa exhibited protein tyrosine phosphorylation, compared to untreated controls (82 + 9% vs 34 +/- 10%; p < 0.001); tyrosine-phosphorylated proteins were localized specifically to the mid-piece of the sperm. The profile of protein tyrosine phosphorylation was inhibitable by higher concentrations (> 0.5 mM) of tyrosine kinase inhibitor, tyrphostin A47. However, at lower (0.1-0.25 mM) concentrations, the compound interestingly induced early sperm capacitation and protein tyrosine phosphorylation, like PF. These results show that protein tyrosine phosphorylation in the mid-piece segment (mitochondrial sheath) appears to be an early and essential event during PF-induced capacitation and a regulated level of tyrosine phosphorylation of sperm proteins is critical for capacitation of hamster spermatozoa.  相似文献   

11.
Effect of progesterone on bovine sperm capacitation and acrosome reaction   总被引:5,自引:0,他引:5  
Progesterone (P) appears to stimulate sperm capacitation and/or induce the acrosome reaction (AR) in some species. In bovine, it is now well established that the BSP-A1/-A2 proteins (the major proteins of bovine seminal plasma) promote sperm capacitation. In this study, we investigated the effect of P on bovine sperm cholesterol efflux, capacitation, and the AR. Labeled bovine epididymal sperm were incubated (0-6 h) with different concentrations of P (0.01-10 microg/ml) in the presence or absence of BSP-A1/-A2 proteins (capacitating conditions). At different time intervals, aliquots of sperm were taken to determine the sperm cholesterol efflux, sperm capacitation (AR induced by lysophosphatidylcholine, lyso-PC), and sperm AR. The results show that the presence of P in the media did not affect the membrane cholesterol efflux potential of the BSP-A1/-A2 proteins. P alone did not stimulate the AR with or without lyso-PC unless the epididymal sperm were incubated in capacitating conditions (in the presence of BSP-A1/-A2). When washed ejaculated sperm were continuously incubated with P, the P did not stimulate AR. However, when ejaculated sperm were preincubated (6 h) with heparin (capacitation medium) and then incubated 15 min with P (2 microg/ml), the percentage of AR obtained was similar to that obtained with lyso-PC. The effect of P on sperm AR was concentration dependent with a maximum 2.2-fold increase at 2 microg/ml of P. These results demonstrate a potential role of P in bovine sperm AR but not in capacitation.  相似文献   

12.
The aim of the present study was to investigate whether the generation of nitric oxide by human spermatozoa is associated with human sperm capacitation and with the tyrosine phosphorylation of sperm proteins. Human spermatozoa were capacitated in the presence or absence of nitric oxide-releasing compounds or nitric oxide synthase inhibitors, and then the percentage of acrosome loss induced by human follicular fluid or by calcium ionophore was determined. The presence of the nitric oxide-releasing compounds primed spermatozoa to respond earlier to human follicular fluid whereas nitric oxide synthase inhibitors decreased the percentage of acrosome reaction. Moreover, nitric oxide modulated tyrosine phosphorylation of sperm proteins. A tight correlation between capacitation and tyrosine phosphorylation regulated by nitric oxide was observed. Results indicate that nitric oxide is involved in human sperm capacitation and emphasize the importance of oxidoreduction reactions in the fine control of sperm physiology.  相似文献   

13.
New methods are needed for rapid and sensitive assessment of sperm function. As the ability to fertilize an oocyte is acquired during the capacitation process, assessments of sperm function have to be performed under fertilizing conditions. In this study, we monitored the dynamics of the temporal response of sperm from ejaculates of both fertile and subfertile boars to capacitating conditions in vitro (responsiveness) by following the changes in the response to calcium ionophore treatment and in [Ca(2+)](i). The differences between individual males were also investigated. Ionophore-induced changes and increased intracellular calcium ion content in boar spermatozoa were found to progress as a function of time during incubation under capacitating conditions. After primary kinetic analysis, 120 min was chosen as the point in time for assessment of responsiveness. Intra-boar variability in responsiveness parameters was relatively high (variation coefficient CV>30%), especially in the response to ionophore treatment, indicating that an isolated test may be inadequate for the evaluation of sperm function. Despite this high variability, there were markedly significant individual differences with respect to changes during capacitation, and there were significant correlations between conventional and responsiveness sperm parameters. The population of samples from subfertile boars, was found to be heterogeneous in regard to sperm responsiveness to capacitating conditions. There were two significantly different classes of subfertile boars ("low" and "high" responders), indicating that fertility may be associated with suboptimal rather than maximal response (both too rapid and too slow membrane changes). Therefore, criteria for quality judgement should include both the low and upper limits of responsiveness. The use of responsiveness parameters together with conventional spermatological parameters improved the prediction level of multiple regression models for farrowing rate and litter size. It can be concluded that the combination of sperm responsiveness parameters applied here is a suitable tool for the evaluation of sperm function.  相似文献   

14.
Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. Since sperm detachment may be due to surface remodeling brought about by capacitation, the aim of this paper was to investigate whether anandamide at physiological concentrations could act as a capacitating agent in bull spermatozoa. We demonstrated that at nanomolar concentrations R(+)-methanandamide or anandamide induced bull sperm capacitation, whereas SR141716A and capsazepine (a TRPV1 antagonist) inhibited this induction. Previous studies indicate that mammalian spermatozoa possess the enzymatic machinery to produce and degrade their own AEA via the actions of the AEA-synthesizing phospholipase D and the fatty acid amide hydrolase (FAAH) respectively. Our results indicated that, URB597, a potent inhibitor of the FAAH, produced effects on bovine sperm capacitation similar to those elicited by exogenous AEA suggesting that this process is normally regulated by an endogenous tone. We also investigated whether anandamide is involved in bovine heparin-capacitated spermatozoa, since heparin is a known capacitating agent of bovine sperm. When the spermatozoa were incubated in the presence of R(+)-methanandamide and heparin, the percentage of capacitated spermatozoa was similar to that in the presence of R(+)-methanandamide alone. The pre-incubation with CB1 or TRPV1 antagonists inhibited heparin-induced sperm capacitation; moreover the activity of FAAH was 30% lower in heparin-capacitated spermatozoa as compared to control conditions. This suggests that heparin may increase endogenous anandamide levels. Our findings indicate that anandamide induces sperm capacitation through the activation of CB1 and TRPV1 receptors and could be involved in the same molecular pathway as heparin in bovines.  相似文献   

15.
In the present study, the effect of two particular reactive oxygen species (ROS), superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) on buffalo (Bubalus bubalis) sperm capacitation and associated protein tyrosine phosphorylation was studied. Ejaculated buffalo spermatozoa were suspended in sp-TALP medium at 50 x 10(6)/mL and incubated at 38.5 degrees C for 6h with or without heparin (10(g/mL; a positive control), or xanthine (X; 0.5mM)-xanthine oxidase (XO; 0.05 U/mL)-catalase (C; 2100 U/mL) system that generates O(2)(-) or NADPH (5mM) that stimulates the endogenous O(2)(-) production or H(2)O(2) (50 microM). The specific effect of O(2)(-), H(2)O(2) and NADPH on buffalo sperm capacitation and protein tyrosine phosphorylation was assessed by the addition of superoxide dismutase (SOD), catalase and diphenylene iodonium (DPI), respectively, to the incubation medium. Each of X+XO+C system, NADPH and H(2)O(2) induced a significantly higher percentage (P<0.05) of capacitation in buffalo spermatozoa compared to control. However, DPI inhibited this NADPH-induced capacitation and protein tyrosine phosphorylation and suggested for existence of an oxidase in buffalo spermatozoa. Using immunoblotting technique, at least seven tyrosine-phosphorylated proteins (20, 32, 38, 45, 49, 78 and 95 kDa) were detected in capacitated buffalo spermatozoa. Out of these, the tyrosine phosphorylation of p95 was induced extensively by both O(2)(-) as well as exogenous source of H(2)O(2) and using specific activators and inhibitors of signaling pathways, it was found this induction was regulated through a cAMP-dependent PKA pathway. Further, immunofluorescent localization study revealed that these ROS-induced tyrosine-phosphorylated proteins are mostly distributed in the midpiece and principal piece regions of the flagellum of capacitated spermatozoa and suggested for increased molecular activity in flagellum during capacitation. Thus, the study revealed that both O(2)(-) and H(2)O(2) promote capacitation and associated protein tyrosine phosphorylation in buffalo spermatozoa and unlike human and bovine, a different subset of sperm proteins were tyrosine-phosphorylated during heparin- and ROS-induced capacitation and regulation of these ROS-induced processes were mediated through a cAMP/PKA signaling pathway.  相似文献   

16.
Sperm surface changes during in vitro capacitation were examined with the help of an assay system using lectincoated agarose beads. The nature and intensity of binding of epididymal spermatozoa to beads depended entirely on the particular stage of capacitation and the type of lectin attached to the bead surface. Fresh epididymal spermatozoa bound readily to beads coated with Con A, LCA, WGA, and PNA, but not with seven other lectins. During capacitation there was a constant decline in sperm binding to beads, and spermatozoa cultured for 4–5 hr bound only to those coated with Con A. A dramatic increase in sperm binding to Con A-coated agarose beads occurred between 4.5 and 5 hr, when large numbers of hyperactivated spermatozoa adhered, predominantly through their flagellae, to form large clumps on the beads. The clumping of spermatozoa on Con A-coated beads was enhanced in the presence of stimulators of capacitation (i.e., taurine, hypotaurine, and phosphodiesterase inhibitors) and was suppressed in the presence of various metabolic inhibitors (i.e., sodium azide and local anesthetics). The implications of these results are that the carbohydrate components of the entire surface of spermatozoa undergo striking changes during capacitation, and a close relationship may exist between the sperm surface and the metabolic changes occurring within capacitating spermatozoa. Sperm-bead binding assays are clearly able to recognize surface changes in asynchronous populations of motile spermatozoa and, due to their simplicity and speed, should prove to be valuable in gaining a greater understanding of the biochemistry of sperm capacitation.  相似文献   

17.
Effect of heparin on in vitro capacitation of boar sperm   总被引:1,自引:0,他引:1  
Chlortetracycline (CTC) fluorescent pattern, the ability to undergo acrosome reaction (AR) upon exposure to 10 microM calcium ionophore A23187 and vitality estimation were used to investigate the effect of the sulfated glycosaminoglycan heparin on the in vitro capacitation of porcine spermatozoa. Sperm incubation in capacitating medium (CM) supplemented with 10 mM heparin for up to 120 min, showed an increase in the number of capacitated sperm (B pattern) and acrosome reacted sperm (AR pattern), without affecting their viability. In this condition, spermatozoa were incubated in CM depleted of albumin, calcium, bicarbonate or combinations, in the presence of heparin. In either calcium or bicarbonate-free media, capacitation was only basal and did not show variations in the presence of heparin. In absence of albumin the presence of calcium and bicarbonate stimulated capacitation, which was further increased by the addition of heparin. These results suggest that heparin enhances in vitro capacitation of porcine sperm only under capacitating conditions. Additionally, when sperm were incubated with 100 microg/ml biotinylated heparin in the presence or absence of unlabeled heparin, we observed that heparin binding sites were located mostly on the acrosomal region of boar sperm in an specific and saturable manner. The in vitro effect of heparin described in this work indicates that sulfated glycosaminoglycans, which are normally present in the female reproductive tract, might play an important role in the fertilization process in porcines.  相似文献   

18.
Microfilaments appear in boar spermatozoa during capacitation in vitro   总被引:1,自引:0,他引:1  
Boar spermatozoa were incubated in a capacitation medium and examined for the presence of filamentous actin by using the fluorescent probe NBD-phallacidin. F-actin was not observed in uncapacitated sperm, but developed in most regions of the cell during the capacitation period. Fluorescent staining was most intense in the flagellum. When fresh seminal plasma was added to capacitated sperm and the sperm was further incubated, F-actin was no longer observed. In view of previous experiments which indicated that plasma membrane proteins (PMPs), including a major integral PMP, move out of the sperm head into the flagellum during capacitation and that this movement is inhibited by the microfilament poison cytochalasin D (Peterson, Saxena, Saxena, and Russell: Biol. Reprod., in press, '86), we suggest that actin-PMP interactions play a major role in capacitating boar spermatozoa.  相似文献   

19.
It is generally accepted that incubation with heparin is required to induce capacitation of ejaculated bovine spermatozoa in vitro. The capacitation process implicates many biochemical events, and is correlated with modified sperm motility and the phosphorylation of specific proteins on tyrosine residues. To better understand the molecular basis of heparin-induced capacitation, bovine spermatozoa were incorporated with a radioactive substrate of protein kinases [gamma32P]-ATP, to observe protein phosphorylation dynamics over time. Sperm motion parameters including the percentage of motile spermatozoa, amplitude of lateral head displacement (ALH) and flagellar beat cross frequency (BCF) were assessed to determine whether the protein phosphorylation patterns induced by heparin also promote changes in motility. Capacitation was confirmed using the chlortetracycline fluorescence assay and the appearance of 'pattern B' stained spermatozoa. Evaluation of the different motility parameters during capacitation reveal that heparin has a marked negative effect, over time, on the percentage of motile spermatozoa, consistent with hyperactivation. Indeed, the presence of heparin greatly increases the BCF of bull spermatozoa and induces a significant increase in the ALH compared to spermatozoa incubated without heparin. We detected several sperm proteins that are phosphorylated over time. A 45 kDa protein is the most intensely phosphorylated of the sperm proteins. However, it is visible regardless of the presence of heparin. Interestingly, a second phosphorylated protein of approximately 50 kDa undergoes more intense phosphorylation with heparin than without. In summary, the present study demonstrated that heparin induces physiological changes in several sperm motility parameters including ALH, BCF and the percentage of motile spermatozoa. Heparin also increases the intensity of phosphorylation of a 50 kDa sperm protein. These results suggest that capacitation of bovine spermatozoa and capacitation-associated motility changes may be regulated by a mechanism that includes protein phosphorylation, and that a presently unknown protein kinase is involved.  相似文献   

20.
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium‐sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3‐phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H‐89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号