首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequencies of chromatid aberrations produced in roots of Vicia faba by clastogenic (chromosome-damaging) agents were strongly enhanced by exposing the root-tip cells to inhibitors of DNA synthesis during the G2 phase. Chromosome damage produced by both S-dependent (maleic hydrazide, methyl methanesulfonate, thio-TEPA) and S-independent (X-rays, streptonigrin) mechanisms was enhanced by the inhibitor treatments. The types of aberrations affected by the inhibitors were mainly chromatid gaps and breaks and isochromatid breaks of the non-union type. Most effective among the inhibitors tested were hydroxyurea (HU) and 5-fluorodeoxyuridine (FdUrd). Post-treatments with caffeine were effective in enhancing clastogen-induced chromosome damage when given during the S phase. All types of aberrations, exchanges as well as breaks, were enhanced by the post-treatments. When given during the G2 phase, caffeine enhanced only the frequency of chromatid aberrations produced by X-rays. The enhancement was slight and obtained only when the cells were irradiated in the G2 phase and immediately post-treated with caffeine. Clastogen-treated cultures of human lymphocytes responded to post-treatments with inhibitors of DNA synthesis in very much the same way as clastogen-treated root-tip cells of Vicia faba. Thus, the frequencies of chromatid gaps and breaks and isochromatid breaks of the non-union type were strongly enhanced by exposing clastogen-treated lymphocytes to inhibitors of DNA synthesis during the G2 phase. The efficiency of the inhibitors, however, varied considerably in the two materials. On the whole, the number of inhibitors capable of enhancing induced chromosome damage was much larger in lymphocytes than in bean root tips. Only HU was equally effective in both materials. The most striking difference between the two materials was found when caffeine was given as a post-treatment. Thus, in human lymphocytes the frequencies of chromatid aberrations induced by most clastogenic agents were strongly enhanced when caffeine was given during the G2 phase, but little affected by post-treatments with caffeine during the S phase.  相似文献   

2.
The effect of caffeine and cycloheximide during the G2 phase on frequency of chromosomal aberrations and G2 duration was studied in control and X-ray-irradiated human lymphocytes in vitro. Caffeine treatments alone increase the frequencies of chromatid breakage and decrease the average G2 duration in control and X-ray-irradiated lymphocytes (40 R). Both caffeine effects are reversed by 0.5 micrograms/ml cycloheximide in combination treatments. Cycloheximide treatments alone prolong G2 duration in control as well as in X-ray-irradiated lymphocytes although no improvement in chromosome repairing by this inhibitor of protein synthesis was observed under the conditions of our experiments. We propose that the cycloheximide effect is associated with a low level of mitotic factors, required for the entrance into mitosis, which is maintained at a higher level in caffeine treatment alone. Finally, G2 delay has generally been associated with certain genome damage. The fact that the caffeine and cycloheximide effects on X-irradiated lymphocytes are also present in control lymphocytes (without X-rays) suggests that control of the G2 duration constitutes one of the mechanisms involved in DNA repair operating during the G2 phase.  相似文献   

3.
The effects of post-treatments with caffeine on the frequencies of chromosomal aberrations induced by the trifunctional alkylating agent thiotepa were studied in human lymphocytes and in root tips of Vicia faba. In lymphocytes the frequency of aberrations induced in G0 or G1 was most strongly increased when the caffeine post-treatments were given during G2. In Vicia faba, on the other hand, the frequency of aberrations induced in early interphase was unaffected by post-treatments with caffeine during G2, but strongly increased when the root tips were exposed to caffeine during the S phase.  相似文献   

4.
The chromosomal aberration test using a Chinese hamster lung cell line (CHL) was carried out on 1-nitropyrene (NP), 3 dinitropyrenes (DNPs), fluorene and 4 mononitrofluorenes with and without metabolic activation (rat S9 mix). The 3 DNPs (1,3-, 1,6- and 1,8-DNP) induced chromosomal aberrations in the absence of S9 mix. The frequencies of cells with aberrations after treatment for 48 h were 43% at 2 micrograms/ml of 1,3-DNP, 55% at 0.1 microgram/ml of 1,6-DNP and 45% at 0.025 microgram/ml of 1,8-DNP, indicating the order of clastogenic potency as 1,8- greater than 1,6- greater than 1,3-DNP. On the other hand, 1-NP, which is known to be a direct-acting mutagen in bacteria, was negative in the chromosomal aberration test without S9 mix, but clearly positive with S9 mix. This effect was dependent on the concentration of the S9 fraction in the reaction mixture. High-pressure liquid chromatography analysis showed that 1-NP was converted by S9 mix to several metabolites, including 1-aminopyrene (AP). The clastogenic activity of 1-AP, however, was equivocal without S9 mix, suggesting that active clastogens other than 1-AP exist. Fluorene induced chromosomal aberrations only in the presence of S9 mix (61.8% at 25 micrograms/ml). 1-, 2-, 3- and 4-nitrofluorene (NF) were more clastogenic in the presence of S9 mix than in the absence of S9 mix, suggesting that NFs were converted to more active clastogens by S9 mix.  相似文献   

5.
K Kishi 《Mutation research》1987,176(1):105-116
It has been shown that certain types of DNA lesions induced by an S-dependent clastogen are converted to chromosome-type aberrations when their repair is inhibited in the G1 phase of the cell cycle. The purpose of the present study was to investigate which kinds of repair inhibitors have the ability to induce chromosome-type aberrations in cells having DNA lesions and which kinds of DNA lesions will be converted to chromosome-type aberrations when their repair is inhibited. For this purpose, human peripheral blood lymphocytes, which were treated with a clastogen in their G0 phase, were post-treated with one of several kinds of repair inhibitors in the G1 phase, and resulting frequencies of both chromosome-type and chromatid-type aberrations as well as of sister-chromatid exchanges (SCEs) were compared with those of the control cultures: chromatid-type aberrations and SCEs were adopted as cytogenetic indicators of lesions remaining in S and G2 phases. Chemicals used for the induction of DNA lesions were 4-nitroquinoline 1-oxide (4NQO), methyl methanesulfonate (MMS) and mitomycin C (MMC); inhibitors used were excess thymidine (dThd), caffeine, hydroxyurea (HU), 5-fluoro-2'-deoxyuridine (FdUrd), 1-beta-D-arabinofuranosylcytosine (ara C), 9-beta-D-arabinofuranosyladenine (ara A), 1-beta-D-arabinofuranosylthymine (ara T) and aphidicolin (APC). Induction of chromosome-type aberrations was observed in cells pretreated with 4NQO or MMS followed by ara C, ara A, ara T or APC, whereas other combinations of a clastogen and an inhibitor did not induce them. Among the inhibitors, ara C alone induced chromosome-type aberrations in cells without pretreatment. Chromatid-type aberrations were increased only in cells pretreated with MMC and their frequency was enhanced further by post-treatment with ara C. All of the clastogens used in the present experiments induced SCEs. Most inhibitors did not modify the SCE frequencies except for ara C which synergistically increased the frequency in MMC-treated cells. The present study offers further evidence that the lesions responsible for chromosome-type aberrations are those which are repaired quickly, and that they are converted to chromosome-type aberrations when repair by polymerase alpha is inhibited. The effects of ara C on MMC-induced lesions are considered residual effects of ara C treatment in the S or G2 phases rather than repair inhibition in the G1 phase.  相似文献   

6.
Genotoxic effects of o-phenylphenol metabolites in CHO-K1 cells   总被引:1,自引:0,他引:1  
The effects of microsomal activation and/or deactivation on the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) in cultured Chinese hamster ovary cells (CHO-K1 cells) by o-phenylphenol (OPP) were studied, and concurrently the metabolites were determined. After a 3-h incubation in the presence of 15% S9 mix (45 microliters/ml of S9), OPP (25-150 micrograms/ml) dose-independent SCEs and chromosomal aberrations were induced, while the amount of phenylhydroquinone (PHQ) metabolite produced from OPP did not increase linearly in the higher doses. The maximum induction of chromosomal aberrations was 18% at the 150 micrograms/ml dose, and of SCEs 13.8/cell at 75 micrograms/ml. The corresponding control values were 3% and 5.8/cell. The lowest dose required to induce SCEs in the presence of S9 mix was 25 micrograms/ml. Changing the percent of S9 mix (0-50%) while holding the OPP dose constant (100 micrograms/ml) produced a correlation between SCEs and the production of PHQ. PHQ caused cytogenetic effects both with and without S9 mix, however, in the absence of S9 mix it was more lethal and was oxidized to phenylbenzoquinone (PBQ). These results suggest that the enhanced cytogenetic effects of OPP by the addition of S9 mix correlated with the amount of PHQ produced or with the further oxides of PHQ such as phenylsemiquinone and/or PBQ which are capable of being produced from PHQ spontaneously or by the mixed-function oxidase system.  相似文献   

7.
The effect of the G2 repair of chromosomal damage in lymphocytes from workers exposed to low levels of X- or gamma-rays was evaluated. Samples of peripheral blood were collected from 15 radiation workers, 20 subjects working in radiodiagnostics, and 30 healthy control donors. Chromosomal aberrations (CA) were evaluated by scoring the presence of chromatid and isochromatid breaks, dicentric and ring chromosomes in lymphocytes with/without 5 mM caffeine plus 3 mM-aminobenzamide (3-AB) treatment during G2. Our results showed that the mean value of basal aberrations in lymphocytes from exposed workers was higher than in control cells (p < 0.001). The chromosomal damage in G2, detected with caffeine plus 3-AB treatment was higher than the basal damage (untreated conditions), both in control and exposed populations (p < 0.05). In the exposed workers group, the mean value of chromosomal abnormalities in G2 was higher than in the control (p < 0.0001). No correlation was found between the frequency of chromosome type of aberrations (basal or in G2), and the absorbed dose. Nevertheless, significant correlation coefficients (p < 0.05) between absorbed dose and basal aberrations yield (r = 0.430) or in G2 (r = 0.448) were detected when chromatid breaks were included in the total aberrations yield. Under this latter condition no significant effect of age, years of employment or smoking habit on the chromosomal aberrations yield was detected. However, analysis of the relationship between basal aberrations yield and the efficiency of G2 repair mechanisms, defined as the percentage of chromosomal lesions repaired in G2, showed a significant correlation coefficient (r = -0.802; p < 0.001). These results suggest that in addition to the absorbed dose, the individual G2 repair efficiency may be another important factor affecting the chromosomal aberrations yield detected in workers exposed to low-level ionizing radiation.  相似文献   

8.
The frequency of sister chromatid exchanges (SCEs), both spontaneous and induced by UV-light, X-rays, mitomycin C and ethylmetansulphonate (EMS), has been investigated in cultured human peripheral blood lymphocytes. Besides, frequency of spontaneous and induced SCEs was studied under the action of the inhibitors of topoisomerase II, polymerase poly(ADP-ribose), and DNA repair, i. e. novobiocin, 3-metoxybenzamide, and caffeine, respectively. It is shown that the base-line SCEs in lymphocytes of the patient with xeroderma pigmentosum II (XP2LE) is dramatically higher compared to that in normal and pigmented xerodermoid cells (XP3LE). The above inhibitors of DNA synthesis and repair enhance the rate of spontaneous SCEs in normal, XP2LE and XP3LE cells. UV-, X-ray and chemical mutagens induced an increased frequency of SCEs in these cells. Simultaneous treatment with mutagenes and inhibitors of DNA synthesis and DNA repair enhanced the rate of SCEs in lymphocytes of healthy donors and in the XP3LE patient. The frequency of the XP2LE cells. Novobiocin, 3-MBA and caffeine significantly decreased the frequency of SCEs in mitomycin C- and EMS-treated XP2LE lymphocyte, which nevertheless was much higher than that in normal cells treated with the same agents.  相似文献   

9.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced structural chromosomal aberrations (CAs) and sister-chromatid exchanges (SCEs) in human lymphocytes and human diploid fibroblasts (TIG-7) at concentrations above 12.5 μg/ml in the presence of rat S9 mix. PhIP also elevated the frequencies of SCEs in human lymphocytes in the presence of rat S9 at concentrations above 2.0 μg/ml with dose-dependency. A proximate form of metabolites of PhIP, 2-hydroxyamino-1-methyl -phenylimidazo[4,5-b]pyridine (N-OH-PhIP), caused CAs in human and Chinese hamster fi fibroblast cells in the absence of S9 mix at concentrations above 0.75 μg/ml and 1.25 μg/ml, respectively, which were 10 times lower than the effective concentration of PhIP. No marked differenceswere observed in the cytogenetic sensitivity to N-OH-PhIP between human and Chinese hamster cells, except between lymphocytes obtained from different donors.  相似文献   

10.
Peripheral blood lymphocytes from normal human volunteers or from Down syndrome patients were pre-treated with sodium butyrate (a compound which is known to induce structural modifications in the chromatin through hyperacetylation of nucleosomal core histones) and exposed to X-irradiation or treated with bleomycin in vitro in the G0 and/or G1 stage(s) of the cell cycle. The frequencies of chromosomal aberrations in the first mitosis after treatment were scored. The results show an enhancement in the yield of aberrations in the butyrate pre-treated groups. However, the absolute frequencies of chromosomal aberrations as well as the relative increases with butyrate pre-treatment varied between blood samples from different donors suggesting the existence of inter-individual variations. There is a parallelism between the effects of X-irradiation or of combined treatments in G0 and G1 stages and between effects observed in the X-ray and bleomycin series. The increase in the yields of chromosomal aberrations in butyrate-treated and X-irradiated lymphocytes (relative to those which received X-irradiation alone) is interpreted as a consequence of the inhibition of repair of DNA damage by butyrate.  相似文献   

11.
Cytogenetic damage induced in human lymphocytes by sodium bisulfite.   总被引:34,自引:0,他引:34  
Z Meng  L Zhang 《Mutation research》1992,298(2):63-69
The frequencies of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), and micronuclei (MN) in human blood lymphocytes exposed to sodium bisulfite (sulfur dioxide) at various concentrations ranging from 5 x 10(-5) M to 2 x 10(-3) M in vitro were studied. It was shown that sodium bisulfite (NaHSO3 and Na2SO3, 1:3 M/M) caused an increase in SCE and MN in human blood lymphocytes in a dose-dependent manner, and also induced mitotic delays and decreased mitotic index. For CA, our results indicated that sodium bisulfite induced an increase of chromatid-type aberrations in lymphocytes from three of four donors in a dose-dependent manner. The chemical at low concentrations induced chromatid-type aberrations, but not chromosome-type aberrations; high concentrations induced both chromatid- and chromosome-type aberrations. No cytogenetic damage in human lymphocytes was induced by sodium sulfate. The results have confirmed that sulfur dioxide is a clastogenic and genotoxic agent.  相似文献   

12.
o-Phenylphenol (OPP), is used in Japan as a fungicide in food additives for citrus fruits. The induction of chromosome aberrations and sister-chromatid exchanges (SCEs) by OPP in cultured Chinese hamster ovary (CHO-K1) cells was studied. Cells were exposed to various concentrations of OPP ranging from 50 to 175 micrograms/ml for 3 h, and further incubated for 27 and 42 h. These incubation periods are almost equal to 2 and 3 cell cycles. SCEs and chromosome aberrations were induced by OPP at concentrations of 100, 125 and 150 micrograms/ml after the incubation for 27 h. For chromosome aberrations, chromatid breaks and exchanges there was a dose-dependent increase. Diplochromosomes due to endoreduplication were also caused by the same concentrations of OPP in a dose-dependent manner. After incubation for 42 h, chromosome aberrations were also increased by OPP at concentrations of 100 and 125 micrograms/ml, but the frequencies of SCEs were not significantly different from those of the control. These results suggest that OPP has a cytogenetic toxicity, and that the DNA damage resulting in SCEs induced by OPP is relatively short-lived and can be repaired during the longer incubation time.  相似文献   

13.
The induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) by short-wave ultraviolet (UV) and X-irradiation was studied in Chinese hamster ovary (CHO) wild-type (WT) cells and one of its UV-hypersensitive mutants, 43-3B. The results indicate that CHO 43-3B show high levels of spontaneously occurring chromosomal aberrations and SCEs; these levels are, respectively, approximately 4 and 1.7 times those found in WT CHO. Treatment with UV produced a considerable delay in the cell-cycle progression of the mutant cells compared to the WT cells. Doses of UV that had no effect on WT cells, significantly induced chromosomal alterations in the mutant in a dose-dependent manner. An approximately 5-fold increase in the induced frequencies of SCEs was obtained in 43-3B cells after UV treatment. No synergistic effect was observed with UV irradiation and the inhibitor of poly(ADP-ribose) synthetase, 3-aminobenzamide (3AB), in either cell type. The frequency of SCEs in the mutant cell lines was lower than would be expected if the effects of UV and the inhibitor were additive. X-Ray alone in G1 and in combination with 3AB in G2 did not induce increased frequencies of chromosomal aberrations in mutant cells in comparison to the WT cells.  相似文献   

14.
3,4-epoxy-1-butene (EB), a primary metabolite of butadiene, is a direct-acting "S-dependent" genotoxicant that can induce sister chromatid exchanges (SCEs) and chromosome aberrations (CAs) in cycling cells in vitro. However, EB is almost inactive when splenic or peripheral blood lymphocytes are exposed at the G(0) stage of the cell cycle. To investigate whether repair of DNA lesions is responsible for the lack of cytogenetic responses seen after G(0) treatments, we used cytosine arabinoside (ara-C) to inhibit DNA polymerization during DNA repair. If enough repairable lesions are present, double-strand breaks should accumulate and form chromosome-type ("S-independent") deletions and exchanges. This is exactly what occurred. EB induced chromosome deletions and dicentrics at the first division following treatment, when the EB exposure was followed by ara-C. Without ara-C treatment, there was no induction of CAs. These experiments indicate that the relatively low levels of damage induced by EB in G(0) lymphocytes are removed by DNA repair prior to DNA synthesis and thus, before the production of SCEs or chromatid-type aberrations.  相似文献   

15.
The comparative effects of inorganic and organic tin compounds on chromosomes were assessed in human peripheral blood lymphocytes of healthy donors 20-40 years of age. The endpoints observed were chromosomal abnormalities, sister-chromatid exchanges (SCEs) and cell cycle kinetics. The maximum concentrations which reduced the replicative index by about 50%, of stannic chloride and trimethyltin chloride were 40 micrograms and 2 micrograms per culture respectively. The tested doses were 20 micrograms and 10 micrograms of stannic chloride and 1 microgram and 0.5 microgram of trimethyltin chloride. Both doses of stannic chloride induced a much higher frequency of chromosomal abnormalities (P less than 0.05-P less than 0.001) and a greater reduction of cell cycle kinetics than the corresponding relative doses of trimethyltin chloride. The frequencies of SCEs/cell induced by the latter were, however, slightly higher than those induced by the former.  相似文献   

16.
In cultures of human peripheral lymphocytes the frequencies of Trenimon-induced SCEs in second post-treatment metaphases and of structural chromosomal aberrations in first, second and third post-treatment metaphases were clearly lower at late as compared with early fixation times. These results, which are discussed, indicate that T cells (early dividing) are more sensitive with respect to the induction of SCEs and structural chromosomal aberrations by Trenimon as compared with B cells (late dividing).  相似文献   

17.
Induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) was studied in wild-type Chinese hamster ovary (CHO-K1) cells and its 2 X-ray-sensitive mutants xrs 5 and xrs 6 (known to be deficient in repair of DNA double-strand breaks (DSBs] by restriction endonucleases (REs) and inhibitors of DNA topoisomerase II known to induce DNA strand breaks. Five different types of REs, namely CfoI, EcoRI, HpaII (which induce cohesive DSBs), HaeIII and AluI (which induce blunt DSBs) were employed. REs that induce blunt-end DNA DSBs were found to be more efficient in inducing chromosomal aberrations than those inducing cohesive breaks. xrs 5 and xrs 6 mutants responded with higher sensitivity (50-100% increase in the frequency of aberrations per aberrant cell) to these REs than wild-type CHO-K1 cells. All these REs were also tested for their ability to induce SCEs. The frequency of SCEs increased in wild-type as well as mutant CHO cells, the induced frequency being about 2-fold higher in xrs mutants than in the wild-type cells. We also studied the effect of inhibitors of DNA topoisomerase II, namely 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposid (VP 16), at different stages of the cell cycle of these 3 types of cells. Both drugs increased the frequency of chromosomal aberrations in G2 cells. The mutants showed increased sensitivity to m-AMSA and VP 16, xrs 6 cells being 10- and 2-fold more sensitive than wild-type CHO-K1 cells respectively, and xrs 5 responding with 2-fold higher sensitivity than xrs 6 cells. G1 treatment of CHO cells with m-AMSA increased both chromosome- and chromatid-type aberrations, xrs mutants being about 3-fold more sensitive than CHO-K1 cells. The frequency of SCEs increased also after treatment of exponentially growing and S-phase CHO cells with m-AMSA and the higher sensitivity of xrs mutants (2-fold) was evident. The S-phase appeared to be a specific stage which is most prone for the induction of SCEs by m-AMSA. The results indicate that DNA DSBs induced by REs and inhibitors of DNA topoisomerase II correlate closely with induced chromosomal aberrations and SCEs in these cell lines, indicating that DSBs are responsible for the production of these 2 genetic endpoints.  相似文献   

18.
Theobromine (3,7-dimethylxanthine) was evaluated for genotoxic activity in a series of in vitro assays. Theobromine was not mutagenic in the Ames assay up to a maximum concentration of 5000 micrograms/plate either with or without S9 activation. The compound also failed to induce significant levels of chromosome aberrations in CHO cells (with and without S9 activation) or transformation in Balb/c-3T3 cells. At the maximum tolerated concentration theobromine increased the frequency of TK-/- mutants in mouse lymphoma L5178Y cells. Increased frequencies were observed both with and without S9 activation and they were reproducible in 2 independent experiments. Statistically significant increases in SCEs were obtained in human lymphocytes and in CHO cells under nonactivation test conditions. The spectrum of results in this battery of tests indicate that theobromine treatment results in the expression of genotoxic potential in some assays and the observed activity appears qualitatively and quantitatively similar to that of caffeine, a closely related methylxanthine.  相似文献   

19.
Cytogenetic monitoring of petrochemical workers   总被引:3,自引:0,他引:3  
X T Zhou  L R Li  M Y Cui  R F Yu  L Li  Z A Yan 《Mutation research》1986,175(4):237-242
The frequencies of chromosomal aberrations and sister-chromatid exchanges (SCEs) in the peripheral blood lymphocytes of 360 persons, 180 workers in a petrochemical corporation and 180 appropriate controls, were studied. A significant increase in chromosomal aberrations and SCEs, compared to the control group, was observed in two sewage-treatment workshop workers; however, there were no significant differences between petrochemical workers from four workshops and a control group.  相似文献   

20.
Frequencies of both sister-chromatid exchange (SCE) and chromosomal breakage (CB) were studied in the lymphocytes of normal individuals (10 and 7 individuals respectively). The cells were exposed in vitro to 3 different concentrations of theophylline (1, 10 and 100 micrograms/ml). A significant concentration effect of the drug was demonstrated for both SCEs and CB. Utilizing a Dunnett's test for individual comparisons, the 10 and 100 micrograms/ml concentrations both demonstrated a significant elevation of SCEs and CB compared to the untreated control cultures. This study suggests that in vitro concentrations of theophylline equal to or greater than 10 micrograms/ml, corresponding to serum levels attained during therapy, increase the frequency of SCEs and chromosome breakage in human lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号