首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is a trimeric enzyme that readily dissociates to the monomer. Dilution of enzyme from 20 to 0.02 microgram of protein/ml is accompanied by a greater than 50-fold increase in the specific activity (vtrimer = 0.23 nmol/min/microgram; vmonomer = 12.5 nmol/min/micrograms). Gel permeation chromatography in the presence of the substrate phosphate shows the enzyme to be predominantly trimeric at 50 mM Pi and predominantly monomeric at 100 mM Pi, when experiments are done at 24 degrees C. No significant dissociation was observed at 4 degrees C with Pi or at either temperature with the substrate inosine. As measured by dissociation, the L0.5 for Pi is 88 mM and thus significantly higher than the Km of 3.1 mM for Pi. Enzyme activity as a function of phosphate concentration showed negative cooperativity, but the conformational response measured by the change in native Mr during dissociation showed positive cooperatively toward Pi. These data support a model for two separate phosphate binding sites on the enzyme. The activity and stability of purine nucleoside phosphorylase are quite sensitive to the concentration of the enzyme as well as appropriate substrates. Although the monomer is interpreted as being a fully active form of the enzyme, the data in general are most consistent with the enzyme functioning in vivo as a regulated trimer.  相似文献   

2.
Effects of acyclovir and its metabolites on purine nucleoside phosphorylase   总被引:5,自引:0,他引:5  
Acyclovir (9-(2-hydroxyethoxymethyl)guanine), the clinically useful antiherpetic agent, is an "acyclic" analogue of 2'-deoxyguanosine. Purine nucleoside phosphorylase partially purified from human erythrocytes did not catalyze detectable phosphorolysis of this drug or any of its metabolites (less than 0.07% of the rate with Guo). However, these compounds were competitive inhibitors of this enzyme with Ino as the variable substrate. Acyclovir per se was a relatively weak inhibitor. Its Ki value (91 microM) was much greater than that for its 8-hydroxy metabolite (Ki = 4.7 microM) but less than that for its carboxylic acid metabolite (9-carboxymethoxy-methylguanine) (K'i = 960 microM). The phosphorylated metabolites of acyclovir were more potent inhibitors than were their guanine nucleotide counterparts. At a phosphate concentration of 50 mM, the apparent Ki values for the mono- (120 microM), di- (0.51 microM), and tri (43 microM)-phosphate esters of acyclovir were 1/2, 1/1200, and 1/26 those for dGMP, dGDP, and dGTP, respectively. The concentration of phosphate did not markedly affect the Ki value of acyclovir but dramatically affected those of its phosphorylated metabolites and their nucleotide counterparts. Decreasing phosphate to a physiological concentration (1 mM) decreased the apparent Ki values for the mono-, di-, and triphosphate esters of acyclovir to 6.6, 0.0087, and 0.31 microM, respectively. Inhibition of the enzyme by acyclovir diphosphate was also influenced by pH. This metabolite of acyclovir is the most potent inhibitor of purine nucleoside phosphorylase reported to date. It has some features of a "multisubstrate" analogue inhibitor.  相似文献   

3.
Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.  相似文献   

4.
Uridine phosphorylase is the only pyrimidine nucleoside cleaving activity that can be detected in extracts of Schistosoma mansoni. The enzyme is distinct from the two purine nucleoside phosphorylases contained in this parasite. Although Urd is the preferred substrate, uridine phosphorylase can also catalyze the reversible phosphorolysis of dUrd and dThd, but not Cyd, dCyd, or orotidine. The enzyme was purified 170-fold to a specific activity of 2.76 nmol/min/mg of protein with a 16% yield. It has a Mr of 56,000 as determined by molecular sieving on Sephadex G-100. The mechanism of uridine phosphorylase is sequential. When Urd was the substrate, the KUrd = 13 microM and the KPi = 533 +/- 78 microM. When dThd was used as a substrate, the KdThd = 54 microM and the KPi = 762 +/- 297 microM. The Vmax with dThd was 53 +/- 9.8% that of Urd. dThd was a competitive inhibitor when Urd was used as a substrate. The enzyme showed substrate inhibition by Urd, dThd (greater than 0.125 mM) and phosphate (greater than 10 mM). 5-(Benzyloxybenzyloxybenzyl)acyclouridine was identified as a potent and specific inhibitor of parasite (Ki = 0.98 microM) but not host uridine phosphorylase. Structure-activity relationship studies suggest that uridine phosphorylase from S. mansoni has a hydrophobic pocket adjacent to the 5-position of the pyrimidine ring and indicate differences between the binding sites of the mammalian and parasite enzymes. These differences may be useful in designing specific inhibitors for schistosomal uridine phosphorylase which will interfere selectively with nucleic acids synthesis in this parasite.  相似文献   

5.
The 5'-deoxy-5'-iodo-substituted analogs of adenosine and inosine are cytotoxic to tumor cells that have high activities of 5'-methylthioadenosine phosphorylase and purine nucleoside phosphorylase, respectively (Savarese, T.M., Chu, S-H., Chu, M.Y., and Parks, R. E., Jr. (1984) Biochem. Pharmacol. 34, 361-367). 5-Iodoribose 1-phosphate (5-IRib-1-P), the common intracellular metabolite of these 5'-iodonucleosides, has been synthesized enzymatically from 5'-deoxy-5'-iodoadenosine via adenosine deaminase from Aspergillus oryzae and human erythrocytic purine nucleoside phosphorylase. The purification and chemical properties of 5-IRib-1-P are described. The analog sugar phosphate inhibited purine nucleoside phosphorylase from human erythrocytes, phosphoglucomutase from rabbit muscle, and 5'-methylthioadenosine phosphorylase from Sarcoma 180 cells with Ki values of 26, 100, and 9 microM, respectively. Enzymes that react with 5-phosphoribosyl 1-pyrophosphate (P-Rib-PP), P-Rib-PP amidotransferase, hypoxanthine-guanine phosphoribosyltransferase, adenine phosphoribosyltransferase, and orotate phosphoribosyltransferase-orotidylate decarboxylase from extracts of Sarcoma 180 cells, were inhibited with Ki values of 49, 465, 307, and 275 microM, respectively. 5-IRib-1-P had no effect on P-Rib-PP synthetase. Since the Ki values of the analog sugar phosphate for 5'-methylthioadenosine phosphorylase and P-Rib-PP amidotransferase are much lower than the Km values of the natural substrates, Pi or P-Rib-PP which are reported to be present at nonsaturating concentrations under physiological conditions, these enzymes could be significantly inhibited by 5-IRib-1-P in intact cells.  相似文献   

6.
Purine nucleoside phosphorylase (EC 2.4.2.1, purine nucleoside:orthophosphate ribosyltransferase) was purified and characterized from the malarial parasite, Plasmodium lophurae, using a chromatofocusing (Pharmacia) column and a formycin B affinity column. The apparent isoelectric point of the native protein, as determined by chromatofocusing, was 6.80. By gel filtration and both native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the native enzyme appeared to be a pentamer with a native molecular weight of 125,300 and a subunit molecular weight of 23,900. The enzyme had a broad pH optimum, pH 5.5-7.5, with maximum activity at pH 6.0-6.5. The enzyme reaction was readily reversible with a Km for inosine of 33 microM and a Km for hypoxanthine of 82 microM. Thioinosine, guanosine, and guanine were also substrates for the plasmodial enzyme, but allopurinol and adenine were not. The parasite enzyme was competitively inhibited by formycin B (Ki = 0.39 microM). Formycin A, azaguanine, and 8-aminoguanosine were not inhibitors of the enzyme.  相似文献   

7.
1. The partial purification of purine nucleoside phosphorylase from rabbit erythrocytes is described. 2. Analytical and preparative isoelectric focusing gave a pI value for the enzyme of 4.65. 3. Gel-chromatography and sucrose-density-gradient-centrifugation techniques gave estimates of the molecular weight in the range 75000-83000. 4. Lineweaver-Burk plots of kinetic data were non-linear at high inosine concentrations. Extrapolation of the linear part of such plots yielded a Km value for inosine of about 70 micrometer for the rabbit erythrocyte and liver enzymes. 5. A Hill interaction coefficient of 0.75 was obtained, suggesting negative co-operativity with respect to the binding of inosine. 6. Treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) caused partial inactivation, and subsequent Lineweaver-Burk plots with inosine as substrate displayed complete linearity, with an increase in Km value for inosine to 200 micrometer. 7. Starch-gel electrophoresis did not reveal the presence of secondary isoenzymes; all tissue extracts examined gave electrophoretic patterns similar to those obtained with the partially purified enzyme from erythrocytes. 8. Results of hybridization studies with nucleoside phosphorylase from human foetal liver suggest that the rabbit enzyme is also a trimer.  相似文献   

8.
Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.  相似文献   

9.
At low concentrations of Mg2+ or Mn2+ the reaction catalyzed by isocitrate dehydrogenase from bovine adrenal cortex proceeds with a lag period which disappears as a result of the enzyme saturation with Mn2+ or Mg2+. The nu o versus D,L-isocitrate concentration curve is non-hyperbolic, which may be interpreted either by the presence of two active sites with different affinity for the substrate (K'mapp = 2.3 and 63 microM) within the enzyme molecule or by the "negative" cooperativity of these sites. The apparent Km value for NADP lies within the range of 3.6-9 microM. High concentrations of NADP inhibit isocitrate dehydrogenase (Ki = 1.3 mM). NADP.H inhibits the enzyme in a mixed manner with respect to NADP (Ki = 0.32 mM). In the presence of NADP.H the curve nu o dependence on NADP concentration shows a "negative" cooperativity between NADP binding sites. The reverse enzyme-catalyzed reaction of reductive carboxylation of 2-oxoglutarate does not exhibit any significant deviations from the Michaelis-Menten kinetics. The Km value for 2-oxoglutarate is 120 microM, while that for NADP.H is 10 microM.  相似文献   

10.
Some properties of human erythrocyte pyrimidine 5'-nucleotidase   总被引:1,自引:0,他引:1  
In haemolysates human erythrocyte pyrimidine 5'-nucleotidase had a single optimum at pH 7.2 with CMP and 6.75 with UMP as substrate. The purified enzyme showed two pH optima at pH 6.25 and 7.2 with UMP as substrate. The enzyme was inhibited by both its products - inorganic phosphate and pyrimidine nucleoside. The inhibition by inorganic phosphate appeared to be non-competitive with Ki = 1.5 mM. Contrary to previous reports adenosine and inosine did not inhibit the enzyme.  相似文献   

11.
The active enzyme form was found to be a homotrimer, no active monomers were observed. Only in the presence of an extremely high orthophosphate concentration (0.5 M) or at a low enzyme concentration (0.2 microg/ml) with no ligands present a small fraction of the enzyme is probably in a dissociated and/or non-active form. The specific activity is invariant over a broad enzyme concentration range (0.017 microg/ml-0.29 mg/ml). At concentrations below 0.9 microg/ml and in the absence of ligands the enzyme tends to loose its catalytic activity, while in the presence of any substrate or at higher concentrations it was found to be active as a trimer. In the absence of phosphate the enzyme catalyses the hydrolysis of 7-methylguanosine (m7Guo) with a catalytic rate constant 1.3x10(-3) x s(-1) as compared with the rate of 38 s(-1) for the phosphorolysis of this nucleoside. The initial pre-steady-state phase of the phosphorolysis of m7Guo, 70 s(-1), is almost twice faster than the steady-state rate and indicates that the rate-limiting step is subsequent to the glycosidic bond cleavage. Complex kinetic behaviour with substrates of phosphorolytic direction (various nucleosides and orthophosphate) was observed; data for phosphate as the variable substrate with inosine and guanosine, but not with their 7-methyl counterparts, might be interpreted as two binding sites with different affinities, or as a negative cooperativity. However, the titration of the enzyme intrinsic fluorescence with 0.2 microM-30 mM phosphate is consistent with only one dissociation constant for phosphate, K(d)=220+/-120 microM. Protective effects of ligands on the thermal inactivation of the enzyme indicate that all substrates of the phosphorolytic and the synthetic reactions are able to form binary complexes with the calf spleen purine nucleoside phosphorylase. The purine bases, guanine and hypoxanthine, bind strongly with dissociation constants of about 0.1 microM, while all other ligands studied, including 7-methylguanine and 7-methylhypoxanthine, bind at least 3 orders of magnitude less potently. Binding of guanine and hypoxanthine is about 10-fold weakened by the presence of phosphate. These observations are best interpretable by the complex kinetic mechanism of the phosphorolytic reaction involving (i) random substrate binding, (ii) unusually slow, hence strongly rate-limiting, dissociation of the products guanine and hypoxanthine, but not 7-methylguanine and 7-methylhypoxanthine, and (iii) dual function of the phosphate binding site with phosphate acting as a substrate and as a modifier helping in the release of a purine base after glycosidic bond cleavage.  相似文献   

12.
1. Qualitative studies on the stability of rabbit erythrocyte purine nucleoside phosphorylase showed a marked decrease in the susceptibility of the enzyme to thermal inactivation and digestion by proteinases of different specificities in response to certain of its substrates. 2. The extent to which inosine stabilizes the enzyme against thermal and proteolytic inactivation is related in a quantitative manner to the concentration of this substrate; it is proposed that differences in the rates of inactivation of the enzyme may reflect substrate-induced conformational changes in the enzyme structure that could alter the binding properties of the enzyme in a kinetically significant way. 3. A synergistic effect in the stabilization of the enzyme is observed in response to both substrates, inosine and phosphate, when the enzyme is inactivated with Pronase. 4. In the presence of substrate an increased rate of inactivation after reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) is reported. 5. Differential-inactivation studies were also carried out with calf spleen purine nucleoside phosphorylase, and the results are discussed in relation to the kinetic properties displayed by this enzyme.  相似文献   

13.
Nucleoside analog inhibition studies have been conducted on thyroidal purine nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) which catalyzed an ordered bi-bi type mechanism where the first substrate is inorganic phosphate and the last product is ribose 1-phosphate. Heterocyclic- and carbohydrate-modified nucleoside inhibitors demonstrate mixed type inhibition suggesting such analogs show an affinity (Ki) for the free enzyme. A kinetic model is proposed which supports the observed inhibition patterns. These studies together with alternate substrate studies indicate that nucleoside binding requires a functional group capable of hydrogen bonding at the 6-position of the purine ring and that the orientation of the bound substrate may be syn. Proper geometry of the phosphate is dependent upon the 3'-substituent to the orientated below the furanose ring. The 5'-hydroxyl group is required for substrate activity. The proposed rate limiting step of the phosphorylase mechanism is the enzymatic protonation of the 7-N position of the nucleoside.  相似文献   

14.
Glycogen phosphorylase isolated from bovine skeletal muscles was found to be homogeneous during polyacrylamide gel electrophoresis. The enzyme phosphorylation by phosphorylase kinase is accompanied by the incorporation of one mole of labeled phosphate per protein dimer; therefore the enzyme is represented by a partly phosphorylated form. The presence of a phosphate group prevents the removal of the protein-bound pyridoxal phosphate. The partly phosphorylated bovine phosphorylase possesses a low affinity for AMP and is inactive in the presence of IMP. Bovine phosphorylase a obtained from the partly phosphorylated enzyme has a molecular mass corresponding to a dimer. Both forms of bovine phosphorylase exhibit high cooperativity towards the substrate. The mechanism of phosphorylase a activation by AMP and IMP is identical: the nucleotides increase the enzyme affinity for the substrate as well as the maximal rate of the enzymatic reaction. Study of the enzyme inhibition by caffeine revealed the cooperativity of caffeine-binding centers. The equilibrium between the active and inactive enzyme conformations in the presence of caffeine is markedly shifted towards the inactive (T) form of glycogen phosphorylase.  相似文献   

15.
1. Double reciprocal plots (1/v vs 1/S) for nucleoside substrates of chicken liver purine nucleoside phosphorylase were non linear at high inosine or deoxyinosine concentrations (greater than 0.1 mM). The appearance of downward curvatures may be correlated with the oxidation of sulfhydryl groups of the enzyme. 2. 5,5'-Dithiobis-(2-nitrobenzoic acid) reacts with four sulfhydryl groups in the native enzyme, but upon denaturation with sodium dodecylsulfate six sulfhydryl groups react with this reagent. 3. Inosine, ribose-1-phosphate, hypoxanthine and orthophosphate partially protect sulfhydryl groups from the reaction with Ellman's reagent. 4. Inhibition of purine nucleoside phosphorylase by p-chloromercuribenzoate and 5,5'-dithiobis-(2-nitrobenzoic acid) follows a second order reaction kinetics.  相似文献   

16.
1. CoA-thioether analogues of 3-hydroxy-3-methylglutaryl-CoA containing an additional methyl group at positions 2, 6(methyl at C3) or 4 of the acyl residue were prepared. To probe for hydrophobic interaction, their inhibitory properties were determined with 3-hydroxy-3-methylglutaryl-CoA reductase purified from baker's yeast. The CoA-thioethers were purely competitive inhibitors whose affinity to the reductase was near to that of the physiological substrate. 2. CoA-sulfoxides derived from the CoA-thioethers displayed affinities to the reductase superior to that of the physiological substrate (Km = 7 microM). Depending on the degree of recognition of diastereomers by the enzyme, the inhibitor constants of the two best inhibitors vary from Ki = 200 nM and Ki = 80 nM (diastereomeric mixtures) to 25 nM and 20 nM, respectively (if only one diastereomer would interact with the enzyme).  相似文献   

17.
4'-Azidothymidine (ADRT) is a novel nucleoside analog, that selectively inhibits human immunodeficiency virus replication in human lymphocytes. Unlike the dideoxyribonucleoside analogs and 3'-azido-2',3'-dideoxythymidine (AZT), ADRT retains the 3'-hydroxy group. The pathways of ADRT metabolism were elucidated by determining: (i) the kinetics of the interactions of ADRT and its metabolites with enzymes of thymidine metabolic pathways, (ii) the pool sizes of phosphorylated metabolites, and (iii) the nature of ADRT incorporation into human DNA. ADRT is not a substrate for thymidine phosphorylase, but is metabolized by kinases. Thymidine kinase phosphorylates ADRT to ADRT monophosphate (ADRT-MP). For this enzyme, ADRT has a Ki value of 5.2 microM, in comparison to a Km value of 0.7 microM for thymidine. The Km value of ADRT toward thymidine kinase is 8.3 microM and the rate of ADRT phosphorylation is 1.4% that of thymidine phosphorylation. ADRT-MP has a low affinity toward thymidylate kinase (a Ki value of 28.9 microM versus a Km value of 0.56 microM for thymidylate), and toward thymidylate synthase (a Ki value of 180 microM versus a Km value of 8 microM for deoxyuridylate). The results suggest that ADRT can be activated effectively by cellular kinases without significant interference of normal thymidine metabolism. In cultured human lymphocytes (A3.01, H9, and U937 cells), ADRT was phosphorylated efficiently to ADRT 5'-triphosphate (ADRT-TP), which is the major metabolite of ADRT. The intracellular concentrations of ADRT-TP ranged from 1 to 3.3 microM after 24 h of incubation with 2 microM of ADRT and the half-life of ADRT-TP varied from 3 to 6 h. Although ADRT-TP is a poor competitive inhibitor against dTTP toward DNA polymerases alpha and beta with Ki values of 62.5 and 150 microM, respectively. ADRT-MP was found to be internally incorporated into cellular DNA. The extent of ADRT-MP substitution for dTMP in DNA was 1 in 6979 for A3.01 cells incubated with 2.9 microM ADRT for 24 h. Internal incorporation of ADRT-MP contrasts with the mechanism of other 2',3'-dideoxynucleoside analogs (i.e. AZT, ddC, ddI, d4T...), which are DNA chain terminators. This finding indicates that a 3'-deoxy structure in a nucleoside analog is not a prerequisite for anti-human immunodeficiency virus activity.  相似文献   

18.
Grapefruit juice sac ATP-PFK was studied kinetically for its substrates ATP and Fru-6-P at pH = 7.5. The Km for ATP is equal to 39.8 +/- 4.6 microM. ATP becomes inhibitory at concentrations above 80 microM. The Km for ATP is not affected by the addition of citrate (10 mM). For Fru-6-P, the saturation curve is sigmoidal, with an S0.5 equal to 0.17 +/- 0.03 mM, in the presence of Mg++ (2.5 mM) and ATP (1 mM). ATP-PFK shows a negative cooperativity at lower concentrations of Fru-6-P (h = 0.5), while higher concentrations of the substrate induce a positive cooperation (h = 1.5). The presence of citrate affects the S0.5 affinity value, but not the Vmax. The presence of citrate (10 mM) removes the cooperative effect at higher concentrations of the substrate, as h = 1.0. A theoretical Ki for citrate was calculated and equals 1.30 mM.  相似文献   

19.
The kinetic properties of highly purified human placental cytoplasmic 5'-nucleotidase were investigated. Initial velocity studies gave Michaelis constants for AMP, IMP, and CMP of 18, 30, and 2.2 microM, respectively. The enzyme shows the following relative Vmax values: CMP greater than UMP greater than dUMP greater than GMP greater than AMP greater than dCMP greater than IMP. The activity was magnesium-dependent, and this cation binds sequentially with a Km of 14 microM for AMP and an apparent Km of 6 mM for magnesium. A large variety of purine, pyrimidine, and pyridine compounds exert an inhibitory effect on enzyme activity. IMP, GMP, and NADH produce almost 100% inhibition at 1.0 mM. Nucleoside di- and triphosphates are potent inhibitors. ATP and ADP are competitive inhibitors with respect to AMP and IMP as substrates with Ki values of 100 and 15 microM, respectively. Inorganic phosphate is a noncompetitive inhibitor with Ki values of 19 and 43 mM. Nucleosides and other compounds studied produce only a modest decrease of enzyme activity at 1 mM. Our findings suggest that the enzyme is regulated under physiological conditions by the concentrations of magnesium, nucleoside 5'-monophosphates, and nucleoside di- and triphosphates. The nucleotide pool concentration regulates the enzyme possibly by a mechanism of heterogeneous metabolic pool inhibition. These properties of human placental cytoplasmic 5'-nucleotidase may be related to the control of nucleotide degradation in vivo.  相似文献   

20.
Formycin B (FB), a moderate inhibitor (Ki approximately 100 microM) of mammalian purine nucleoside phosphorylase (PNP), and formycin A (FA), which is totally inactive vs. the mammalian enzyme, are both effective inhibitors of the bacterial (Escherichia coli) enzyme (Ki approximately 5 microM). Examination of a series of N-methyl analogues of FA and FB led to the finding that N(6)-methyl-FA, virtually inactive vs. the mammalian enzyme, is the most potent inhibitor of E. coli purine nucleoside phosphorylase (Ki approximately 0.3 uM) at neutral pH. Inhibition is competitive not only with respect to Ino, but also relative to 7-methyl-Guo and 7-methyl-Ado, as substrates. Both oxoformycins A and B are relatively poor inhibitors. For the most potent inhibitor, N(6)-methyl-FA, it was shown that the enzyme preferentially binds the neutral, and not the cationic, form. In accordance with this the neutral, but not the cationic form, of the structurally related N(1)-methyl-Ado was found to be an excellent substrate. Reported data on tautomerism of formycins were profited from, and extended, to infer which tautomeric species and ionic forms are the active inhibitors. A commercially available (Sigma) bacterial PNP, of unknown origin, was shown to differ from the E. coli enzyme by its inability to phosphorylase Ado; this enzyme was also resistant to FA and FB. These findings have been extended to provide a detailed comparison of the substrate/inhibitor properties of PNP from various microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号