首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Group swimming size influences metabolic energy consumption and swimming behaviour in fishes. Hydrodynamic flows and vortices of other fish are thought to be beneficial in terms of the energetic costs of swimming. Similarly, abiotic obstructions have been shown to have similar benefits with respect to metabolic consumption in swimming fish such as rainbow trout Oncorhynchus mykiss. The current study works to examine metabolic rates and swimming behaviours as a function of group swimming with bluegill sunfish Lepomis macrochirus and O. mykiss. Fishes were subjected to individual and group swimming in a respiratory swim tunnel to determine oxygen consumption as a proxy for the metabolic rate of swimming fish. In addition, fish movements within the swim tunnel test chamber were tracked to examine group swimming behaviour. We hypothesized that fish would benefit metabolically from group swimming. In the case of O. mykiss, we also hypothesized that groups would benefit from the presence of an abiotic structure, as has been previously observed in fish swimming individually. Our results suggest that the influence of group size on swimming metabolism is species specific. While L. macrochirus show decreased metabolic rate when swimming in a group compared to individually, O. mykiss did not show such a metabolic benefit from group swimming.  相似文献   

2.
The swimming performance and associated swimming behaviour (i.e. substratum‐skimming, station‐holding and free swimming) were assessed in shortnose sturgeon Acipenser brevirostrum during critical swimming and endurance swimming tests over a rough and a smooth substratum. It was hypothesized that the addition of a rough substratum in the swimming flume may provide a surface for the A. brevirostrum to grip and offer an energetic advantage. Substratum type did not affect the critical swimming performance, but A. brevirostrum consistently performed more bottom behaviours (i.e. substratum‐skimming and station‐holding) while on a smooth substratum. Acipenser brevirostrum had little contact with the rough substratum until the velocity was >1 body length s?1. Endurance swimming time was significantly lower for A. brevirostrum over the rough bottom at the highest velocity (30 cm s?1) which may be attributed to the observed increase in free swimming and decrease in bottom behaviours. During endurance swimming, the rough substratum was mainly used at intermediate velocities, suggesting that there may be a stability cost associated with being in contact with the rough substratum at certain velocities.  相似文献   

3.
This study sought to observe the effects of submerged weight and frontal cross‐sectional area of external telemetry packages on the kinematics, activity levels and swimming performance of small‐bodied juvenile sharks, using lemon sharks Negaprion brevirostris (60–80 cm total length, LT) as a model species. Juveniles were observed free‐swimming in a mesocosm untagged and with small and large external accelerometer packages that increased frontal cross‐sectional area of the animals and their submerged weight. Despite adhering to widely used standards for tag mass, the presence of an external telemetry package altered swimming kinematics, activity levels and swimming performance of juvenile N. brevirostris relative to untagged individuals, suggesting that tag mass is not a suitable standalone metric of device suitability. Changes in swimming performance could not be detected from tail‐beat frequency, which suggests that tail‐beat frequency is an unsuitable standalone metric of swimming performance for small N. brevirostris. Lastly, sharks experienced treatment‐specific changes in activity level and swimming kinematics from morning to afternoon observation. Therefore, the presence of external telemetry packages altered the kinematics, activity levels and swimming performance of small young‐of‐the‐year N. brevirostris and these data may therefore be relevant to other similar‐sized juveniles of other shark species.  相似文献   

4.
We recently found that marine bacteria Vibrio alginolyticus execute a cyclic three-step (run-reverse-flick) motility pattern that is distinctively different from the two-step (run-tumble) pattern of Escherichia coli. How this novel, to our knowledge, swimming pattern is regulated by cells of V. alginolyticus is not currently known, but its significance for bacterial chemotaxis is self-evident and will be delineated herein. Using a statistical approach, we calculated the migration speed of a cell executing the three-step pattern in a linear chemical gradient, and found that a biphasic chemotactic response arises naturally. The implication of such a response for the cells to adapt to ocean environments and its possible connection to E. coli's response are also discussed.  相似文献   

5.
The stereotypical courtship display (CD) behavior of the male blue crab, Callinectes sapidus, includes an unusual component: the rhythmic waving of the swimming appendages above the carapace. This behavior occurs in a unique context but it resembles two other rhythmic behaviors performed using the swimming legs: sideways swimming and backward swimming. As a first step to understanding the mechanisms that allow the expression of apparently different rhythmic motor patterns, we have examined these behaviors using slow motion video analysis and electromyography of the basal muscles of the swimming legs in freely behaving crabs. The results show that these behaviors are distinguished by four parameters: the frequency of leg waving, the phase relationship between the legs, the presence of a stationary pause in basal muscle activity combined with rotation of the distal leg during CD, and an extended range of motion of these legs during CD and backward swimming, relative to sideways swimming. EMG analysis revealed that during sideways swimming, the sequence of muscular activity between the two legs was different. In contrast, during CD and backward swimming the sequence of activity for these legs is identical.Abbreviations CD courtship display - EMGs electromyograms - CD AMP courtship display in crabs with amputated fifth legs - CD1 crabs that voluntarily used one leg to perform courtship display waving - CD 1–3 courtship waving in cycles 1–3 - CD MID courtship waving after cycles 1–3 - M-C meral-carpal joint  相似文献   

6.
Prolonged and high‐speed swimming performance measurements were used to explore the swimming abilities of two species of estuarine fishes, the mummichog Fundulus heteroclitus and the striped killifish Fundulus majalis, under different salinities. Critical swimming performance was significantly higher for F. majalis in high salinity than in low salinity, but no difference was observed in brief constant acceleration swimming trials in this species; however, the swimming performance of F. heteroclitus was not significantly affected by salinity changes, indicating that this species is well adapted to regular estuarine salinity oscillations. Fundulus majalis displayed higher swimming speeds than F. heteroclitus in both high and low salinities, and while this cannot be explained by their respective salinity preferences, the specific habitat preferences of F. majalis for sandy subtidal habitats and F. heteroclitus for vegetated marshes could explain the better swimming performance of F. majalis.  相似文献   

7.
Chlamydomonadales are elective subjects for the investigation of the problems related to locomotion and transport in biological fluid dynamics, whose resolution could enhance searching efficiency and assist in the avoidance of dangerous environments. In this paper, we elucidate the swimming behavior of Tetraflagellochloris mauritanica, a unicellular–multicellular alga belonging to the order Chlamydomonadales. This quadriflagellate alga has a complex swimming motion consisting of alternating swimming phases connected by in‐place random reorientations and resting phases. It is capable of both forward and backward swimming, both being normal modes of swimming. The complex swimming behavior resembles the run‐and‐tumble motion of peritrichous bacteria, with in‐place reorientation taking the place of tumbles. In the forward swimming, T. mauritanica shows a very efficient flagellar beat, with undulatory retrograde waves that run along the flagella to their tip. In the backward swimming, the flagella show a nonstereotypical synchronization mode, with a pattern that does not fit any of the modes present in the other Chlamydomonadales so far investigated.  相似文献   

8.
Swimming performance is considered a main character determining survival in many aquatic animals. Body morphology highly influences the energetic costs and efficiency of swimming and sets general limits on a species capacity to use habitats and foods. For two cyprinid fishes with different morphological characteristics, carp (Cyprinus carpio L.) and roach (Rutilus rutilus (L.)), optimum swimming speeds (U mc) as well as total and net costs of transport (COT, NCOT) were determined to evaluate differences in their swimming efficiency. Costs of transport and optimum speeds proved to be allometric functions of fish mass. NCOT was higher but U mc was lower in carp, indicating a lower swimming efficiency compared to roach. The differences in swimming costs are attributed to the different ecological demands of the species and could partly be explained by their morphological characteristics. Body fineness ratios were used to quantify the influence of body shape on activity costs. This factor proved to be significantly different between the species, indicating a better streamlining in roach with values closer to the optimum body form for efficient swimming. Net swimming costs were directly related to fish morphology.  相似文献   

9.
The antimalarial drugs, quinacrine, chloroquine, quinine, primaquine, and mefloquine, share structural similarities with W-7, a compound that inhibits calcium-dependent backward swimming and calcium currents in Paramecium. Therefore, we tested whether antimalarial drugs also inhibit backward swimming and calcium currents in P. calkinsi. When the Paramecium is depolarized in high potassium medium, voltage-dependent calcium channels in the ciliary membrane open causing the cell to swim backward for 30 to 70 s. Application of calcium channel inhibitors, such as W-7, reduce the duration of backward swimming. In 0.05 mM calcium, quinacrine, mefloquine, quinine, chloroquine, primaquine and W-7 all reduced the duration of backward swimming. These effects were seen in sodium-containing and sodium-free high potassium solutions as well as sodium-free depolarizing solutions containing potassium channel blockers. In these low calcium solutions, backward swimming was inhibited by 50% at concentrations ranging from 100 nM to 30 M. At higher calcium concentrations (1 mM or 15 mM), the effects of the antimalarials and W-7 were reduced. The effects of quinacrine and W-7 were tested directly on calcium currents using the two microelectrode voltage clamp technique. In 15 mM calcium, 100 M quinacrine and 100 M W-7 reduced the peak calcium current by 51% and 42%, respectively. Thus, antimalarial drugs reduce calcium currents in Paramecium calkinsi.  相似文献   

10.
The wave wash hunting employed by Orcinus orca, also known as killer whales, is unique in that the prey is hunted outside of the water by generating waves. To quantitatively analyze the specific mechanism of the wave wash, data were obtained using computational fluid dynamics (CFD), and wave theory was introduced as the theoretical background to clarify the mechanism. The relationships between the swimming characteristics and wave parameters are defined in this paper. The results obtained by numerical investigation revealed that the wavelength increased with the swimming speed. Additionally, the wave height increased as the swimming speed increased and the swimming depth became shallower, and subsequently converged to a maximum of 2.42 m. The success of hunting is determined by two wave parameters, which indicate the intensity of the wave wash: the wave height and force exerted on the prey. The metabolic rate and the drag force are considered to evaluate the efficiency of the locomotion, which varied according to the swimming speed (V) and swimming depth (d) of the whales. To generate hunting waves efficiently, the optimal ranges of V and d were estimated to be 3 ~ 5 m/s and 0.5 m ~ 1.1 m respectively.  相似文献   

11.
Alcids propel themselves by flapping wings in air and water that have vastly different densities. We hypothesized that alcids change wing kinematics and maintain Strouhal numbers (St = fA/U, where f is wingbeat frequency, A is the wingbeat amplitude, and U is forward speed) within a certain range, to achieve efficient locomotion during both flying and swimming. We used acceleration and GPS loggers to measure the wingbeat frequency and forward speed of free‐ranging rhinoceros auklets Cerorhinca monocerata during both flying and swimming. We also measured wingbeat amplitude from video footage taken in the wild. On average, wingbeat frequency, forward speed, and wingbeat amplitude were 8.9 Hz, 15.3 m s?1, and 0.39 m, respectively, during flying, and 2.6 Hz, 1.3 m s?1, and 0.18 m, respectively, during swimming. The smaller wingbeat amplitude during swimming was achieved by partially folding the wings, while maintaining the dorso‐ventral wingbeat angle. Mean St was 0.23 during flying and 0.36 during swimming. The higher St value for swimming might be related to the higher thrust force required for propulsion in water. Our results suggest that rhinoceros auklets maintain St for both flying and swimming within the range (0.2–0.4) that propulsive efficiency is known to be high and St in both flying specialists and swimming specialists are known to converge.  相似文献   

12.
We investigate the kinematics of swimming garter snakes (Thamnophis sirtalis) using a novel nonlinear regression-based digitization method to establish quantitative statistical support for non-constant wavelengths in the undulatory pattern exhibited by swimming snakes. We find that in swimming snakes, the growth of the amplitude of the propulsive wave head-to-tail is strongly correlated (p < 0.005) with the head-to-tail growth in the wavelength. We investigate correlations between kinematic parameters and steady swimming speed, and find a very strong positive correlation between swimming speed and undulation frequency. We furthermore find a statistically well-supported positive correlation between swimming speed and both the initial amplitude of the propulsive wave at the head and the degree of amplitude growth from head to tail.  相似文献   

13.
We investigate the kinematics of swimming garter snakes (Thamnophis sirtalis) using a novel nonlinear regression-based digitization method to establish quantitative statistical support for non-constant wavelengths in the undulatory pattern exhibited by swimming snakes. We find that in swimming snakes, the growth of the amplitude of the propulsive wave head-to-tail is strongly correlated (p < 0.005) with the head-to-tail growth in the wavelength. We investigate correlations between kinematic parameters and steady swimming speed, and find a very strong positive correlation between swimming speed and undulation frequency. We furthermore find a statistically well-supported positive correlation between swimming speed and both the initial amplitude of the propulsive wave at the head and the degree of amplitude growth from head to tail.  相似文献   

14.
Parasites have deleterious effects on their hosts, often resulting in altered host behavior or increased energy expenditure. When organisms are exposed to suboptimal environments, parasite loading may increase. Microbialite pools along the warm temperate South African coastline have been hypothesized as refugia for Epaulette gobies (Coryogalops sordidus, Gobiidae) when they are outside of their previously known subtropical distribution. The aim of this study was to determine if C. sordidus individuals infected with metacercarial cysts display higher metabolic rates or different swimming behavior compared to noninfected individuals. We measured each goby's swimming performance using a critical station-holding speed (Ucrit) test (n = 60) and visually scored their swimming behavior (n = 52) during these measurements. Also, we measured the metabolic rate of gobies using an intermittent flow respirometer system to determine standard metabolic rate (SMR) and maximum metabolic rate (MMR) from gobies at 21°C before and after swimming trials. Metacercarial load carried by infected gobies seemingly had no impact on the host's energetics (SMR or MMR), swimming ability (as repeated Ucrit tests), or swimming behavior compared to noninfected gobies. Thus, the metacercarial intensity observed in gobies in the current study appeared to have no impact on host swimming performance or behavior. Furthermore, the swimming capacity observed for C. sordidus, in general, suggests that this goby is a poor swimmer compared to other gobiid species.  相似文献   

15.
【目的】探究铜绿假单胞菌(Pseudomonas aeruginosa)鸟苷酸环化酶(diguanylate cyclase,DGC)SadC合成的环二鸟苷酸(cyclicdi-GMP,c-di-GMP)信号与PilZ结构域受体间的信号传递关系,分析鉴定出特定PilZ结构域受体的调控功能和机制。【方法】SadC突变株和过表达菌株的构建及泳动能力分析;SadC过表达背景下,PilZ结构域受体突变各菌株的泳动表型分析和筛选;基因敲除和过表达解析筛选出的PilZ结构域受体功能;定点突变和遗传互补检测筛选出的PilZ结构域受体是否参与SadC合成c-di-GMP对泳动能力的调控。【结果】SadC通过影响鞭毛功能而非鞭毛形成抑制铜绿假单胞菌的泳动能力;PilZ结构域受体突变菌株筛选发现PilZ、FlgZ这2个受体参与了SadC介导的泳动能力抑制;功能分析发现ΔpilZ或ΔflgZ的泳动能力相比野生型PA14显著增强,而过表达PilZ或FlgZ则抑制了泳动能力;定点突变和回补实验发现PilZ第10位和FlgZ第140位氨基酸R对其介导SadC负调控泳动能力至关重要,多序列比对分析表明这些位点是其保...  相似文献   

16.
Burst swimming in fish results in a marked metabolic acidosis. Chinook salmon (Oncorhynchus tshawytscha) blood was shown to have a marked Root shift, such that burst swimming and the subsequent metabolic acidosis should impair oxygen delivery to the tissues and, therefore, aerobic swimming capacity. Burst swimming was found to have no effect on aerobic swimming capacity in Chinook salmon and it is concluded that any effects on aerobic swimming, of the induced metabolic acidosis following burst swimming, was offset by the release of catecholamines.  相似文献   

17.
Van Gool  Erik  Ringelberg  Joop 《Hydrobiologia》2003,491(1-3):301-307
During a short period of the year, Daphnia may perform a phenotypically induced diel vertical migration. For this to happen, light-induced swimming reactions must be enhanced both at dawn and at dusk. Enhanced swimming in response to light intensity increase can be elicited by fish-associated kairomone in the laboratory, if food is sufficiently available. However, during the light change at dusk the Daphnia are still in the hypolimnion, where no fish kairomone is present and both temperature and food availability is low. Still, what goes down must come up. This raises questions about how Daphnia tunes its light-induced swimming behaviour to prevailing conditions such that a normal diel vertical migration can be performed. We investigated the symmetry in behavioural mechanism underlying these diel vertical migrations in the hybrid Daphnia galeata × hyalina (Cladocera; Crustacea), with special interest for the environmental cues that are known to affect swimming in response to light increase. That is, we tested whether fish- associated kairomone, food availability, and temperature affected both swimming in response to light intensity increase and decrease similarly. We quantified swimming behaviour during a sequentially increased rate of light change. Vertical displacement velocity was measured and proved to be linearly related to the rate of the light change. The slope (PC) of the function depends on the value of the factors kairomone concentration, food availability, and temperature. The changes of the PC with kairomone concentration and with temperature were similar both at light intensity increases and decreases. The PC also increased with food concentration, although during light increases in a different way from during light intensity decreases. Low food availability inhibited swimming in response to light intensity increase, but enhanced swimming in response to light intensity decrease. Hence, ascent from the deep water layers with low food concentration at dusk is facilitated. These causal relations are part of a proximate decision-making mechanism which may help the individual Daphnia to tune migration to predation intensity and food availability.  相似文献   

18.
Trichocyst discharge is an effective defense of Paramecium against Dileptus margaritifer. The possible defensive function of backward swimming, which often follows trichocyst discharge upon Paramecium-Dileptus encounters was studied. Mutants incapable of backward swimming (pawnA in P. tetraurelia, cnrA in P. caudatum) escaped from dilepti nearly as frequently as wild-type cells. Double mutants (pawnA-nd7, cnrA-tnd2) were eaten nearly as frequently as mutants incapable of trichocyst discharge. Thus, in the defense of Paramecium against D. margaritifer, the role of backward swimming is minor, if any, compared to trichocyst discharge. Among escaped cells, about a half of wild-type and essentially none of pawnA (cnrA) cells showed backward swimming. Paramecium behavior during the encounter can be mimicked by the local, not global, application of lysozyme which is a strong secretagogue of trichocyst.  相似文献   

19.
Experimental measurements were made in the laboratory to determine the swimming capacities of settlement-stage fish larvae of several Mediterranean coastal species collected from the nearshore waters of Corsica, France. Critical swimming speed (Ucrit, cm s−1) was measured to provide a realistic laboratory estimate of in situ swimming speed. Morphometric traits were measured to assess potential predictors of a species’ swimming ability and, when possible, daily otolith increments were used to estimate age. Observed swimming speeds were consistent with other temperate species and demonstrated that the tested species are competent swimmers and not passive components of their environment. Morphological traits varied in their correlation with Ucrit across groups and species. Direct measurements of morphological traits were better predictors than calculated ratios. Pelagic larval duration had little relationship with swimming speed among species for which daily otolith increments were counted. In addition to expanding the database on swimming capacities of settlement-stage fish larvae in the Mediterranean Sea, this study also developed methods that simplify the assessment of larval fish swimming ability. Swimming speed data are essential for improving larval dispersal models and for predicting recruitment rates in coastal fish populations.  相似文献   

20.
The southern flounder Paralichthys lethostigma, host to the nematode Philometroides paralichthydis that is embedded in place of the inclinator muscles of the dorsal and anal fin elements, is hypothesized to impair two aspects of locomotor performance (swimming and burying capacity). Peak swimming acceleration and both measures of burying performance did not differ between infected and uninfected fish, whereas swimming velocity of infected fish was significantly lower than that of uninfected fish. Smaller infected fish swam at significantly slower speeds than smaller uninfected fish, whereas there was no difference among larger fish. Neither the location nor the number of worms affected either swimming or burying performance. The decrease in swimming velocity observed in smaller infected fish may be sufficient in rendering them more vulnerable to predation and environmental stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号