首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural function of the skin is to protect the body from unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. Since the lipids regions in the stratum corneum form the only continuous structure, substances applied onto the skin always have to pass these regions. For this reason the organization in the lipid domains is considered to be very important for the skin barrier function. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid phase behavior is different from that of other biological membranes. In stratum corneum crystalline phases are predominantly present, but most probably a subpopulation of lipids forms a liquid phase. Both the crystalline nature and the presence of a 13 nm lamellar phase are considered to be crucial for the skin barrier function. Since it is impossible to selectively extract individual lipid classes from the stratum corneum, the lipid organization has been studied in vitro using isolated lipid mixtures. These studies revealed that mixtures prepared with isolated stratum corneum lipids mimic to a high extent stratum corneum lipid phase behavior. This indicates that proteins do not play an important role in the stratum corneum lipid phase behavior. Furthermore, it was noticed that mixtures prepared only with ceramides and cholesterol already form the 13 nm lamellar phase. In the presence of free fatty acids the lattice density of the structure increases. In stratum corneum the ceramide fraction consists of various ceramide subclasses and the formation of the 13 nm lamellar phase is also affected by the ceramide composition. Particularly the presence of ceramide 1 is crucial. Based on these findings a molecular model has recently been proposed for the organization of the 13 nm lamellar phase, referred to as "the sandwich model", in which crystalline and liquid domains coexist. The major problem for topical drug delivery is the low diffusion rate of drugs across the stratum corneum. Therefore, several methods have been assessed to increase the permeation rate of drugs temporarily and locally. One of the approaches is the application of drugs in formulations containing vesicles. In order to unravel the mechanisms involved in increasing the drug transport across the skin, information on the effect of vesicles on drug permeation rate, the permeation pathway and perturbations of the skin ultrastructure is of importance. In the second part of this paper the possible interactions between vesicles and skin are described, focusing on differences between the effects of gel-state vesicles, liquid-state vesicles and elastic vesicles.  相似文献   

2.
Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.  相似文献   

3.
The primary function of the skin is to protect the body for unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid regions. As most drugs applied onto the skin permeate along the lipid domains, the lipid organization is considered to be very important for the skin barrier function. It is for this reason that the lipid organization has been investigated quite extensively. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid organization is different from that of other biological membranes. In stratum corneum, two lamellar phases are present with repeat distances of approximately 6 and 13 nm. Moreover the lipids in the lamellar phases form predominantly crystalline lateral phases, but most probably a subpopulation of lipids forms a liquid phase. Diseased skin is often characterized by a reduced barrier function and an altered lipid composition and organization. In order to understand the aberrant lipid organization in diseased skin, information on the relation between lipid composition and organization is crucial. However, due to its complexity and inter-individual variability, the use of native stratum corneum does not allow detailed systematic studies. To circumvent this problem, mixtures prepared with stratum corneum lipids can be used. In this paper first the lipid organization in stratum corneum of normal and diseased skin is described. Then the role the various lipid classes play in stratum corneum lipid organization and barrier function has been discussed. Finally, the information on the role various lipid classes play in lipid phase behavior has been used to interpret the changes in lipid organization and barrier properties of diseased skin.  相似文献   

4.
The primary function of the skin is to protect the body for unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid regions. As most drugs applied onto the skin permeate along the lipid domains, the lipid organization is considered to be very important for the skin barrier function. It is for this reason that the lipid organization has been investigated quite extensively. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid organization is different from that of other biological membranes. In stratum corneum, two lamellar phases are present with repeat distances of approximately 6 and 13 nm. Moreover the lipids in the lamellar phases form predominantly crystalline lateral phases, but most probably a subpopulation of lipids forms a liquid phase. Diseased skin is often characterized by a reduced barrier function and an altered lipid composition and organization. In order to understand the aberrant lipid organization in diseased skin, information on the relation between lipid composition and organization is crucial. However, due to its complexity and inter-individual variability, the use of native stratum corneum does not allow detailed systematic studies. To circumvent this problem, mixtures prepared with stratum corneum lipids can be used. In this paper first the lipid organization in stratum corneum of normal and diseased skin is described. Then the role the various lipid classes play in stratum corneum lipid organization and barrier function has been discussed. Finally, the information on the role various lipid classes play in lipid phase behavior has been used to interpret the changes in lipid organization and barrier properties of diseased skin.  相似文献   

5.
Lipid lamellae present in the outermost layer of the skin protect the body from uncontrolled water loss. In human stratum corneum (SC), two crystalline lamellar phases are present, which contain mostly cholesterol, free fatty acids, and nine types of free ceramides. Previous studies have demonstrated that the SC lipid organization can be mimicked with model mixtures based on isolated SC lipids. However, those studies are hampered by low availability and high interindividual variability of the native tissue. To elucidate the role of each lipid class in the formation of a competent skin barrier, the use of synthetic lipids would offer an alternative. The small- and wide-angle X-ray diffraction results of the present study show for the first time that synthetic lipid mixtures, containing only three synthetic ceramides, reflect to a high extent the SC lipid organization. Both an appropriately chosen preparation method and lipid composition promote the formation of two characteristic lamellar phases with repeat distances similar to those found in native SC. From all synthetic lipid mixtures examined, equimolar mixtures of cholesterol, ceramides, and free fatty acids equilibrated at 80 degrees C resemble to the highest extent the lamellar and lateral SC lipid organization, both at room and increased temperatures.  相似文献   

6.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

7.
The lipid matrix present in the uppermost layer of the skin, the stratum corneum, plays a crucial role in the skin barrier function. The lipids are organized into two lamellar phases. To gain more insight into the molecular organization of one of these lamellar phases, we performed neutron diffraction studies. In the diffraction pattern, five diffraction orders were observed attributed to a lamellar phase with a repeat distance of 5.4 nm. Using contrast variation, the scattering length density profile could be calculated showing a typical bilayer arrangement. To obtain information on the arrangement of ceramides in the unit cell, a mixture that included a partly deuterated ceramide was also examined. The scattering length density profile of the 5.4-nm phase containing this deuterated ceramide demonstrated a symmetric arrangement of the ceramides with interdigitating acyl chains in the center of the unit cell.  相似文献   

8.
9.
The stratum corneum is the outermost layer of human skin and the primary barrier toward the environment. The barrier function is maintained by stacked layers of saturated long-chain ceramides, free fatty acids, and cholesterol. This structure is formed through a reorganization of glycosylceramide-based bilayers with cubic-like symmetry into ceramide-based bilayers with stacked lamellar symmetry. The process is accompanied by deglycosylation of glycosylceramides and dehydration of the skin barrier lipid structure. Using coarse-grained molecular dynamics simulation, we show the effects of deglycosylation and dehydration on bilayers of human skin glycosylceramides and ceramides, folded in three dimensions with cubic (gyroid) symmetry. Deglycosylation of glycosylceramides destabilizes the cubic lipid bilayer phase and triggers a cubic-to-lamellar phase transition. Furthermore, subsequent dehydration of the deglycosylated lamellar ceramide system closes the remaining pores between adjacent lipid layers and locally induces a ceramide chain transformation from a hairpin-like to a splayed conformation.  相似文献   

10.
Understanding the lipid arrangement within the skin’s outermost layer, the stratum corneum (SC), is important for advancing knowledge on the skin barrier function. The SC lipid matrix consists of ceramides (CERs), cholesterol, and free fatty acids, which form unique crystalline lamellar phases, referred to as the long periodicity phase (LPP) and short periodicity phases. As the SC lipid composition is complex, lipid model systems that mimic the properties of native SC are used to study the SC lipid organization and molecular arrangement. In previous studies, such lipid models were used to determine the molecular organization in the trilayer structure of the LPP unit cell. The aim of this study was to examine the location of CER N-(tetracosanoyl)-phytosphingosine (CER NP) in the unit cell of this lamellar phase and compare its position with CER N-(tetracosanoyl)-sphingosine (CER NS). We selected CER NP as it is the most prevalent CER subclass in the human SC, and its location in the LPP is not known. Our neutron diffraction results demonstrate that the acyl chain of CER NP was positioned in the central part of the trilayer structure, with a fraction also present in the outer layers, the same location as determined for the acyl chain of CER NS. In addition, our Fourier transformed infrared spectroscopy results are in agreement with this molecular arrangement, suggesting a linear arrangement for the CER NS and CER NP. These findings provide more detailed insight into the lipid organization in the SC lipid matrix.  相似文献   

11.
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.  相似文献   

12.
The lipid regions in the outermost layer of the skin (stratum corneum) form the main barrier for diffusion of substances through the skin. In this layer the main lipid classes are ceramides, cholesterol (CHOL), and FFA. Previous studies revealed a coexistence of two crystalline lamellar phases with periodicities of approximately 13 nm (referred to as long periodicity phase) and 6 nm (short periodicity phase). Additional studies showed that lipid mixtures prepared with isolated pig ceramides (pigCER) mimic lipid phase behavior in stratum corneum closely. Because the molecular structure of pigCER differs in some important aspects from that of human ceramides (HCER), in the present study the phase behavior of mixtures prepared with HCER has been examined. Phase behavior studies of mixtures based on HCER revealed that in CHOL:HCER mixtures the long periodicity phase dominates. In the absence of HCER1 the short periodicity phase is dominant. Addition of FFA promotes the formation of the short periodicity phase and induces a transition from a hexagonal sublattice to an orthorhombic sublattice. Furthermore, the presence of FFA promotes the formation of a liquid phase. Finally, cholesterol sulfate, a minor but important lipid in the stratum corneum, reduces the amount of cholesterol that phase separates in crystalline domains. From these observations it can be concluded that the phase behavior of mixtures prepared from HCER differs in some important aspects from that prepared from pigCER. The most prevalent differences are the following: i) the addition of FFA promotes the formation of the short periodicity phase; and ii) liquid lateral packing is obviously present in CHOL:HCER:FFA mixtures. These changes in phase behavior might be due to a larger amount of linoleic acid moiety in HCER mixtures compared with that in pigCER mixtures.  相似文献   

13.
The barrier function of skin ultimately depends on the physical state and structural organisation of the stratum corneum extracellular lipid matrix. Ceramides, cholesterol and a broad distribution of saturated long-chain free fatty acids dominate the stratum corneum lipid composition. Additionally, smaller amounts of cholesterol sulfate and cholesteryl oleate may be present. A key feature determining skin barrier capacity is thought to be whether or not different lipid domains coexist laterally in the stratum corneum extracellular lipid matrix. In this study, the overall tendency for lipid domain formation in different mixtures of extracted human stratum corneum ceramides, cholesterol, free fatty acids, cholesterol sulfate and cholesteryl oleate were studied using atomic force microscopy (AFM) on Langmuir-Blodgett (LB) films on mica. It is shown that the saturated long-chain free fatty acid distribution of human stratum corneum prevents hydrocarbon chain segregation. Further, LB-films of human stratum corneum ceramides express a pattern of connected elongated domains with a granular domain interface. The dominating effect of both cholesterol and cholesterol sulfate is that of increased ceramide domain dispersion. This effect is counteracted by the presence of free fatty acids, which preferentially mix with ceramides and not with cholesterol. Cholesteryl oleate does not mix with other skin lipid components, supporting the hypothesis of an extra-endogenous origin. In the system composed of endogenous human ceramides and cholesterol plus 15 wt% stratum corneum distributed free fatty acids, i.e., the system mimicking most closely the lipid composition of the stratum corneum extracellular space, LB-films on mica express lateral domain formation.  相似文献   

14.
Human stratum corneum (SC) consists of several layers of keratinized corneocytes embedded in a lipid matrix of ordered lamellar structure which is considered to constitute the major barrier to percutaneous penetration. Artificial mixtures of SC lipids are often used as model systems to mimic the skin barrier or to investigate the effects of substances on the phase behaviour of the models. In the present study a SC lipid model composed of cholesterol, fatty acids and ceramides was used to investigate the effect of three different commercially available ceramide types on the microstructure and the physicochemical behaviour of the lipids. Polarized light microscopy, transmission electron microscopy, small-angle X-ray diffraction, wide-angle X-ray diffraction and differential scanning calorimetry (DSC) were used for physicochemical characterization. The results revealed a lamellar structure for all models but showed differences with regard to the thermal and optical behaviour depending obviously on the composition of the ceramide mixtures. A model containing a mixture of Cer[AS] was comparable to human SC lipids.  相似文献   

15.
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

16.
The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the present study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while alpha-hydroxyacid-phytosphingosine ceramide (AP) and non-hydroxyacid-phytosphingosine ceramides (NP) were absent. Also some alterations in fatty acid profiles of ROC ceramides were noted, e.g., esterified omega-hydroxyacid-sphingosine contained increased levels of oleic acid instead of linoleic acid. The fraction of lipids covalently bound to corneocyte proteins was distinctly lower in ROC compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 degrees C) than human skin (74 degrees C). These differences in stratum corneum lipid composition and the thermal phase transitions may explain the minor differences previously observed in drug permeation between ROC and human skin.  相似文献   

17.
The lipid matrix of the skin’s stratum corneum plays a key role in the barrier function, which protects the body from desiccation. The lipids that make up this matrix consist of ceramides, cholesterol, and free fatty acids, and can form two coexisting crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). To fully understand the skin barrier function, information on the molecular arrangement of the lipids in the unit cell of these lamellar phases is very desirable. To determine this arrangement in previous studies, we examined the molecular arrangement of the SPP. In this study, neutron diffraction studies were performed to obtain information on the molecular arrangement of the LPP. The diffraction pattern reveals nine diffraction orders attributed to the LPP with a repeating unit of 129.4 ± 0.5 Å. Using D2O/H2O contrast variation, the scattering length density profiles were calculated for protiated samples and samples that included either the perdeuterated acyl chain of the most abundant ceramide or the most abundant perdeuterated fatty acid. Both perdeuterated chains are predominantly located in the central part of the unit cell with substantial interdigitation of the acyl chains in the unit cell center. However, a fraction of the perdeuterated chains is also located near the border of the unit cell with their acyl chains directing toward the center. This arrangement of lipids in the LPP unit cell corresponds with the location of their lipid headgroups at the border and also inside of the unit cell at a well-defined position (±21 Å from the unit cell center), indicative of a three-layer lipid arrangement within the 129.4 ± 0.5 Å repeating unit.  相似文献   

18.
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the “collodion baby” in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

19.
The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the present study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while α-hydroxyacid-phytosphingosine ceramide (AP) and non-hydroxyacid-phytosphingosine ceramides (NP) were absent. Also some alterations in fatty acid profiles of ROC ceramides were noted, e.g., esterified ω-hydroxyacid-sphingosine contained increased levels of oleic acid instead of linoleic acid. The fraction of lipids covalently bound to corneocyte proteins was distinctly lower in ROC compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 °C) than human skin (74 °C). These differences in stratum corneum lipid composition and the thermal phase transitions may explain the minor differences previously observed in drug permeation between ROC and human skin.  相似文献   

20.
The lipid organization in the outermost layer of the skin, the stratum corneum, is important for the skin barrier function. The stratum corneum lipids are composed of ceramides (CER), free fatty acids (FFA) and cholesterol (CHOL). In the present study Fourier transform infrared (FTIR) and small-angle X-ray scattering (SAXS) techniques were utilized to evaluate the effect of three C18 fatty acid esterified ω-acylceramides (CER EOS) on the lipid organization of stratum corneum model membranes. FTIR spectra (scissoring and rocking bands) showed as a function of temperature significant line-shape changes for both components assigned to the orthorhombic phase. Second-derivative analyzes revealed a significant decrease in the interchain coupling strength (Δν values) for the samples formed by CER EOS with the linoleate (CER EOS-L) and oleate (CER EOS-O) moiety around 28.5 °C. However, only a gradual decrease in the Δν values was noticed for the mixture formed with CER EOS with the stearate moiety (CER EOS-S) over the whole temperature range. In the absence of CER EOS the decrease started already at 25.5 °C, demonstrating that CER EOS stabilized the orthorhombic lattice. This stabilization was most pronounced for the CER EOS-S. Spectral fittings allowed to evaluate the orientation changes of the skeletal plane within the orthorhombic unit cell (θ values) for a given temperature range. From the best-fit parameters (peak area values), a decrease in the orthorhombic phase contribution to the scissoring band was also monitored as a function of the temperature. SAXS studies showed the coexistence of two lamellar phases with a periodicity of ∼5.5 nm (short periodicity phase, SPP) and ∼12 nm (LPP) in the presence of the CER EOS-L and CER EOS-O. However, no diffraction peaks associated to the LPP were detected for CER EOS-S. While CER EOS-S most efficiently stabilized the orthorhombic phase, CER EOS-L and CER EOS-O promoted the presence of the LPP. Therefore, the presence of all three CER EOS as observed in human stratum corneum may contribute to a proper skin barrier function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号