首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg(2+) concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg(2+). Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.  相似文献   

2.
Because of their highly ordered structure, mature viroid RNA molecules are assumed to be resistant to degradation by RNA interference (RNAi). In this article, we report that transgenic tomato plants expressing a hairpin RNA (hpRNA) construct derived from Potato spindle tuber viroid (PSTVd) sequences exhibit resistance to PSTVd infection. Resistance seems to be correlated with high-level accumulation of hpRNA-derived short interfering RNAs (siRNAs) in the plant. Thus, although small RNAs produced by infecting viroids [small RNAs of PSTVd (srPSTVds)] do not silence viroid RNAs efficiently to prevent their replication, hpRNA-derived siRNAs (hp-siRNAs) appear to effectively target the mature viroid RNA. Genomic mapping of the hp-siRNAs revealed an unequal distribution of 21- and 24-nucleotide siRNAs of both (+)- and (–)-strand polarities along the PSTVd genome. These data suggest that RNAi can be employed to engineer plants for viroid resistance, as has been well established for viruses.  相似文献   

3.
M Wassenegger  S Heimes    H L S?nger 《The EMBO journal》1994,13(24):6172-6177
The 359 nucleotides (nt) long potato spindle tuber prototype viroid (PSTVd) is sensitive to experimentally introduced mutations as the substitution or deletion of a single nucleotide usually abolishes its infectivity, although certain sequence alterations are tolerated. This is illustrated by the fact that viroid progeny can evolve in planta upon inoculation with substitution mutants generated in vitro, and by the existence of genetically stable 356-360 nt long PSTVd field isolates. However, to date, no viable in vitro-generated deletion mutant of PSTVd has been reported. We have now found a 341 nt long infectious PSTVd RNA replicon that evolved in agrotransformed plants transformed with the dimeric form of an in vitro-deleted, non-infectious 350 bp long PSTVd cDNA unit by an additional complementary deletion of 9 nt in vivo. This is the first report that the deletion-abolished infectivity of a viroid is restored by an additional deletion that concurrently restabilized its perturbed secondary structure by abandoning an internal segment of the rod-like molecule. The fact that approximately 5% of the total PSTVd RNA genome was deleted demonstrates that the maintenance of this viroid-specific rod-like structure is not only essential for nuclease protection but also for the infectivity, i.e. transmissibility, replicability, processibility and pathogenicity of these minimal infectious agents.  相似文献   

4.
5.
6.
K S Jeng  A Daniel    M M Lai 《Journal of virology》1996,70(4):2403-2410
The ribozymes of hepatitis delta virus (HDV) have so far been studied primarily in vitro. Several structural models for HDV ribozymes based on truncated HDV RNA fragments, which are different from the hammerhead or the hairpin/paperclip ribozyme model proposed for plant viroid or virusoid RNAs, have been proposed. Whether these structures actually exist in vivo and whether ribozymes actually function in the HDV replication cycle have not been demonstrated. We have now developed an in vivo ribozyme self-cleavage assay capable of detecting self-cleavage of dimer or trimer HDV RNA in vivo. By site-directed mutagenesis and compensatory mutations to disrupt and restore potential base pairing in the ribozyme domain of the full-length HDV RNA according to the various structural models, a close correlation between the detected in vivo and the predicted in vitro ribozyme activities of various mutant RNAs was demonstrated. These results suggest that the proposed in vitro ribozyme structure likely exists and functions during the HDV replication cycle in vivo. Furthermore, the pseudoknot model most likely represents the structure responsible for the ribozyme activity in vivo. All of the mutants that had lost the ribozyme activity could not replicate, indicating that the ribozyme activities are indeed required for HDV RNA replication. However, some of the compensatory mutants which have restored both the cleavage and ligation activities could not replicate, suggesting that the ribozyme domains are also involved in other unidentified functions or in the formation of an alternative structure that is required for HDV RNA replication. This study thus established that the ribozyme has important biological functions in the HDV life cycle.  相似文献   

7.
Viroids are noncoding circular single-stranded RNAs that are propagated systemically in plants. VirP1 is a protein from tomato, which is an excellent host for potato spindle tuber viroid (PSTVd), and it has been isolated by virtue of its specific in vitro binding to PSTVd RNA. We report on the specific in vivo interaction of VirP1 with full-length viroid RNA as well as with subfragments in the three-hybrid system. The terminal right domain (TR) of PSTVd was identified as a strong interacting partner for VirP1. A weaker partner is provided by a right-hand subfragment of hop stunt viroid (HSVd), a viroid that infects tomato poorly. We present a sequence and structural motif of the VirP1-interacting subfragments. The motif is disturbed in the replicative but nonspreading R+ mutant of the TR. According to our in vivo and in vitro binding assays, the interaction of this mutant with VirP1 is compromised. We propose that the AGG/CCUUC motif bolsters recognition of the TR by VirP1 to achieve access of the viroid to pathways that propagate endogenous RNA systemic signals in plants. Systemic trafficking has been suggested for miRNA precursors, of which the TR, as a stable bulged hairpin 71 nt long, is quite reminiscent.  相似文献   

8.
In plants, transgenes containing Potato spindle tuber viroid (PSTVd) cDNA sequences were efficient targets of PSTVd infection-mediated RNA-directed DNA methylation. Here, we demonstrate that in PSTVd-infected tobacco plants, a 134 bp PSTVd fragment (PSTVd-134) did not become densely methylated when it was inserted into a chimeric Satellite tobacco mosaic virus (STMV) construct. Only about 4–5% of all cytosines (Cs) of the PSTVd-134 were methylated when flanked by satellite sequences. In the same plants, C methylation was approximately 92% when the PSTVd-134 was in a PSTVd full length sequence context and roughly 33% when flanked at its 3′ end by a 19 bp PSTVd and at its 5′ end by a short viroid-unrelated sequence. In addition, PSTVd small interfering RNAs (siRNAs) produced from the replicating viroid failed to target PSTVd-134-containing chimeric STMV RNA for degradation. Satellite RNAs appear to have adopted secondary structures that protect them against RNA interference (RNAi)—mediated degradation. Protection can be extended to short non-satellite sequences residing in satellite RNAs, rendering them poor targets for nuclear and cytoplasmic RNAi induced in trans.  相似文献   

9.
10.
Potato spindle tuber viroid (PSTVd), an RNA plant pathogen encoding no known proteins, induces systemic symptoms on tomato plants. We report detection of small RNAs of approximately 25 nucleotides with sequence specificity to PSTVd in infected plants: an indication of the presence of RNA silencing. RNA silencing, however, did not appear to be responsible for the differing symptoms induced by a mild and a severe strain of PSTVd. The unique structural and biological features of viroids make them attractive experimental tools to investigate mechanisms of RNA silencing and pathogen counterdefense.  相似文献   

11.
Plants can attenuate the replication of plant viruses and viroids by RNA silencing induced by virus and viroid infection. In higher plants, silencing signals such as small interfering RNAs (siRNAs) produced by RNA silencing can be transported systemically through phloem, so it is anticipated that antiviral siRNA signals produced in a stock would have the potential to attenuate propagation of viruses or viroids in the scion. To test whether this is indeed the case, we prepared transgenic tobacco (Nicotiana benthamiana) expressing a hairpin RNA (hpRNA) of Potato spindle tuber viroid (PSTVd) in companion cells by using a strong companion cell-specific promoter. A grafting experiment of the wild type tobacco scion on the top of the transgenic tobacco stock revealed that accumulation of PSTVd challenge-inoculated into the scion was apparently attenuated compared to the control grafted plants. These results indicate that genetically modified rootstock expressing viroid-specific siRNAs can attenuate viroid accumulation in a non-genetically modified scion grafted on the stock.  相似文献   

12.
Viroids are small non-coding parasitic RNAs that are able to infect their host plants systemically. This circular naked RNA makes use of host proteins to accomplish its proliferation. Here we analyze the specific binding of the tomato protein Virp1 to the terminal right domain of potato spindle tuber viroid RNA (PSTVd). We find that two asymmetric internal loops within the PSTVd (+) RNA, each composed of the sequence elements 5′-ACAGG and CUCUUCC-5′, are responsible for the specific RNA–protein interaction. In view of the nucleotide composition we call this structural element an ‘RY motif’. The RY motif located close to the terminal right hairpin loop of the PSTVd secondary structure has an ~5-fold stronger binding affinity than the more centrally located RY motif. Simultaneous sequence alterations in both RY motifs abolished the specific binding to Virp1. Mutations in any of the two RY motifs resulted in non-infectious viroid RNA, with the exception of one case, where reversion to sequence wild type took place. In contrast, the simultaneous exchange of two nucleotides within the terminal right hairpin loop of PSTVd had only moderate influence on the binding to Virp1. This variant was infectious and sequence changes were maintained in the progeny. The relevance of the phylogenetic conservation of the RY motif, and sequence elements therein, amongst various genera of the family Pospiviroidae is discussed.  相似文献   

13.
14.
15.
16.
Zhu Y  Qi Y  Xun Y  Owens R  Ding B 《Plant physiology》2002,130(1):138-146
Increasing evidence indicates that the phloem mediates traffic of selective RNAs within a plant. How an RNA enters, moves in, and exits the phloem is poorly understood. Potato spindle tuber viroid (PSTVd) is a pathogenic RNA that does not encode proteins and is not encapsidated, and yet it replicates autonomously and traffics systemically within an infected plant. The viroid RNA genome must interact directly with cellular factors to accomplish these functions and is, therefore, an excellent probe to study mechanisms that regulate RNA traffic. Our analyses of PSTVd traffic in Nicotiana benthamiana yielded evidence that PSTVd movement within sieve tubes does not simply follow mass flow from source to sink organs. Rather, this RNA is transported into selective sink organs. Furthermore, two PSTVd mutants can enter the phloem to spread systemically but cannot exit the phloem in systemic leaves of tobacco (Nicotiana tabacum). A viroid most likely has evolved structural motifs that mimic endogenous plant RNA motifs so that they are recognized by cellular factors for traffic. Thus, analysis of PSTVd traffic functions may provide insights about endogenous mechanisms that control phloem entry, transport, and exit of RNAs.  相似文献   

17.
18.
19.
Taxonomy:   Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid , family Pospiviroidae . An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae .
Physical properties:   Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro . Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt.
Hosts and symptoms:   The natural host range of PSTVd—cultivated potato, certain other Solanum spp., and avocado—appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.  相似文献   

20.
Chang J  Taylor JM 《Journal of virology》2003,77(17):9728-9731
In animal cells, small interfering RNAs (siRNA), when exogenously provided, have been reported to be capable of inhibiting replication of several different viruses. In preliminary studies, siRNA species were designed and tested for their ability to act on the protein expressed in Huh7 cells transfected with DNA-directed mRNA constructs containing hepatitis delta virus (HDV) target sequences. The aim was to achieve siRNA specific for each of the three RNAs of HDV replication: (i) the 1,679-nucleotide circular RNA genome, (ii) its exact complement, the antigenome, and (iii) the less abundant polyadenylated mRNA for the small delta protein. Many of the 16 siRNA tested gave >80% inhibition in this assay. Next, these three classes of siRNA were tested for their ability to act during HDV genome replication. It was found that only siRNA targeted against HDV mRNA sequences could interfere with HDV genome replication. In contrast, siRNA targeted against genomic and antigenomic RNA sequences had no detectable effect on the accumulation of these RNAs. Reconstruction experiments with nonreplicating HDV RNA sequences support the interpretation that neither the potential for intramolecular rod-like RNA folding nor the presence of the delta protein conferred resistance to siRNA. In terms of replicating HDV RNAs, it is considered more likely that the genomic and antigenomic RNAs are resistant because their location within the nucleus makes them inaccessible to siRNA-mediated degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号