首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decorin is a member of the widely expressed family of small leucine-rich proteoglycans. In addition to a primary role as a modulator of extracellular matrix protein fibrillogenesis, decorin can inhibit the cellular response to growth factors. Decorin expression is induced in endothelial cells during angiogenesis, but not when migration and proliferation are stimulated. Thus, decorin may support the formation of the fibrillar pericellular matrix that stabilizes the differentiated endothelial phenotype during the later stages of angiogenesis. Therefore, we tested whether constitutive decorin expression alone could modify endothelial cell migration and proliferation or affect pericellular matrix formation. To this end, replication-defective retroviral vectors were used to stably express bovine decorin, which was detected by Northern and Western blotting. The migration of endothelial cells that express decorin is significantly inhibited in both monolayer outgrowth and microchemotaxis chamber assays. The inhibition of cell migration by decorin was not accompanied by decreased proliferation. In addition, endothelial cells that express decorin assemble an extensive fibrillar fibronectin matrix more rapidly than control cells as assessed by immunocytochemical and fibronectin fibrillogenesis assays. These observations suggest that cell migration may be modulated by the influence of decorin on the assembly of the cell-associated extracellular matrix.  相似文献   

2.
Human follicular fluid has been reported to cause angiogenesis. Although endothelial cell mitogenesis is a major component of the process of angiogenesis, the findings in the literature regarding the effects of human follicular fluid in in vitro endothelial cell growth assays are equivocal. In the present study, we examined the effect of human follicular fluid from preovulatory follicles on fetal bovine aortic endothelial cell proliferation. Human serum was used as a control since follicular fluid is largely a transudate of serum and could contain serum-derived endothelial cell mitogens. Neither human follicular fluid nor serum directly caused endothelial cell proliferation. However, follicular fluid, as well as serum, caused an increase in thymidine incorporation by endothelial cells, and resulted in an increased proportion of cells in the DNA synthesis and G2 phases of the cell cycle. Although follicular fluid was not directly mitogenic, it, in contrast to human serum, together with fetal bovine serum markedly enhanced endothelial cell proliferation beyond that caused by fetal bovine serum alone. These results suggest that a combination of factors, some of ovarian origin present in follicular fluid, and others from as yet unidentified sources, govern the mitogenic component of new blood vessel growth in the ovary.  相似文献   

3.
内皮细胞过度增殖引起的病理性血管生成是肿瘤、类风湿性关节炎等发病的关键环节。内皮细胞增殖由血管内皮细胞生长因子等促血管生成因子提供促增殖信号,而新近发现的多种内皮增殖抑制因子,如血管内皮抑素、血管抑素、血小板反应蛋白-1、微囊蛋白1、某些microRNAs和某些抑癌基因等,则通过抑制促增殖信号、调节细胞周期、诱导细胞凋亡等途径下调内皮细胞的增殖及血管生成。内皮增殖抑制因子可望成为病理性血管生成防治的新靶点。  相似文献   

4.
R-(-)-β-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.  相似文献   

5.
Angiogenesis, the formation of new blood vessels from existing capillaries, is critical for tumors to grow beyond a few in size. Tumor cells produce one or more angiogenic factors including fibroblast growth factor and vascular endothelial growth factor. Surprisingly, antiangiogenic factors or angiogenesis inhibitors have been isolated from tumors. Some angiogenesis inhibitors, such as angiostatin, are associated with tumors while others, such as platelet-factor 4 and interferon-alpha are not. Endostatin, a C-terminal product of collagen XVIII, is a specific inhibitor of endothelial cell proliferation, migration and angiogenesis. The mechanism by which endostatin inhibits endothelial cell proliferation and migration is unknown. Endostatin was originally expressed in a prokaryotic system and, late, in a yeast system, thanks to which it is possible to obtain a sufficient quantity of the protein in a soluble and refolded form to be used in preclinical and clinical trials.  相似文献   

6.
Angiogenesis is required for bone development, growth, and repair. It is influenced by the local bone environment that involves cross-talks between endothelial cells and adjacent bone cells. However, data regarding factors that directly contribute to angiogenesis by bone cells remain poorly understood. Here, we report that EGFL6, a member of the epidermal growth factor (EGF) repeat superfamily proteins, induces angiogenesis by a paracrine mechanism in which EGFL6 is expressed in osteoblastic-like cells but promotes migration and angiogenesis of endothelial cells. Co-immunoprecipitation assays revealed that EGFL6 is secreted in culture medium as a homodimer protein. Using scratch wound healing and transwell assays, we found that conditioned medium containing EGFL6 potentiates SVEC (a simian virus 40-transformed mouse microvascular endothelial cell line) endothelial cell migration. In addition, EGFL6 promotes the endothelial cell tube-like structure formation in Matrigel assays and angiogenesis in a chick embryo chorioallantoic membrane. Furthermore, we show that EGFL6 recombinant protein induces phosphorylation of ERK in SVEC endothelial cells. Inhibition of ERK impaired EGFL6-induced ERK activation and endothelial cell migration. Together, these results demonstrate, for the first time, that osteoblastic-like cells express EGFL6 that is capable of promoting endothelial cell migration and angiogenesis via ERK activation. Thus, the EGLF6 mediates a paracrine mechanism of cross-talk between vascular endothelial cells and osteoblasts and might offer an important new target for the potential treatment of bone diseases, including osteonecrosis, osteoporosis, and fracture healing.  相似文献   

7.
目的:探讨阻断载脂蛋白A-I结合蛋白(AIBP)的表达后对心肌微血管内皮细胞(CMECs)血管新生的作用。方法:消化法分离SD大鼠CMECs,通过慢病毒介导的siRNA转染CMECs下调AIBP基因表达,并设立空白对照组及阴性转染组。RT-PCR法检测AIBP基因的表达;CCK-8比色法检测细胞增殖;Transwell小室评价细胞迁移能力;成管实验评价血管新生能力。结果:RT-PCR结果显示,与空白对照组及阴性转染组相比,转染组CMECs中AIBP表达显著降低(P0.01);CCK-8结果显示,与空白对照组及阴性转染组相比,转染组CMECs增值水平显著增高(P0.01);Transwell法结果显示,与空白对照组及阴性转染组相比,转染组CMECs迁移能力显著增高(P0.01);成管实验显示,与空白对照组及阴性转染组相比,转染组CMECs成管能力显著增高(P0.01)。结论:抑制AIBP表达可以明显促进CMECs增殖,促进其迁移和成管。  相似文献   

8.
The ditriazine derivative DTD (4,10-dichloropyrido[5,6:4,5]thieno[3,2-d':3,2-d]-1,2,3-ditriazine) has been previously reported to reduce the degree of granulomatous inflammation and vascular density in a murine air pouch granuloma model. The aim of this study was to test whether DTD affects angiogenesis. Our results show that DTD inhibits in vivo angiogenesis in the chorioallantoic membrane (CAM) assay at doses equal or lower than 0.3 nmol/egg. Different in vitro assays were used to study the potential effects of this compound on key steps of angiogenesis, namely, a colorimetric assay of cell proliferation/viability, a morphogenesis on Matrigel assay, zymographic assays for gelatinases and nuclear morphology and cell cycle analysis for apoptosis induction. Our data indicate that DTD inhibits proliferation but does not induce apoptosis in endothelial cells in vitro. DTD suppresses the endothelial capillary-like chord formation at concentrations lower than those required to inhibit proliferation. DTD treatment inhibits the matrix metalloproteinase-2 production in endothelial and fibrosarcoma cells, but does not affect the cyclooxygenase-2 expression in endothelial cells, as assessed by western blot analysis. Taken together, results here presented indicate that DTD exhibits an anti-angiogenic activity that is independent of inflammatory processes and make it a promising drug for further evaluation in the treatment of angiogenesis-related pathologies.  相似文献   

9.
Nacev BA  Liu JO 《PloS one》2011,6(9):e24793
Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.  相似文献   

10.
The importance of metabolic factors in the regulation of angiogenesis is well understood. An increase in metabolic activity leads to a decrease in tissue oxygenation causing tissues to become hypoxic. The hypoxia initiates a variety of signals that stimulate angiogenesis, and the increase in vascularity that follows promotes oxygen delivery to the tissues. When the tissues receive adequate amounts of oxygen, the intermediate effectors return to normal levels, and angiogenesis ceases. An emerging concept is that adenosine released from hypoxic tissues has an important role in driving the angiogenesis. The following feedback control hypothesis is proposed: AMP is dephosphorylated by ecto-5'-nucleotidase, producing adenosine under hypoxic conditions in the extracellular space adjacent to a parenchymal cell (e.g., cardiomyocyte, skeletal muscle fiber, hepatocyte, etc.). Extracellular adenosine activates A(2) receptors, which stimulates the release of vascular endothelial growth factor (VEGF) from the parenchymal cell. VEGF binds to its receptor (VEGF receptor 2) on endothelial cells, stimulating their proliferation and migration. Adenosine can also stimulate endothelial cell proliferation independently of VEGF, which probably involves modulation of other proangiogenic and antiangiogenic growth factors and perhaps an intracellular mechanism. In addition, hemodynamic factors associated with adenosine-induced vasodilation may have a role in the development and remodeling of the vasculature. Once a new capillary network has been established, and the diffusion/perfusion capabilities of the vasculature are sufficient to supply the parenchymal cells with adequate amounts of oxygen, adenosine and VEGF as well as other proangiogenic and antiangiogenic growth factors return to near-normal levels, thus closing the negative feedback loop. The available data indicate that adenosine might be an essential mediator for up to 50-70% of the hypoxia-induced angiogenesis in some situations; however, additional studies in intact animals will be required to fully understand the quantitative importance of adenosine.  相似文献   

11.
12.
Fucosylated chondroitin sulfate (FucCS), a glycosaminoglycan obtained from sea cucumber, has the same structure as mammalian chondroitin sulfate, but some of the glucuronic acid residues display sulfated fucose branches. This new polysaccharide has a more favorable effect than heparin on vascular cell growth. It inhibits smooth muscle cell proliferation as heparin, and it has a potent enhancing effect on endothelial cell proliferation and migration in the presence of heparin-binding growth factors. We now extend our studies to the effect of this glycosaminoglycan on endothelial cells to an in vitro angiogenesis model on Matrigel. FucCS, in the presence of fibroblast growth factor-2 (FGF-2), strongly increases the capacity of endothelial cells to form vascular tubes on Matrigel with a well-organized capillary-like network and typical closed structures. Comparison between the activity of native and chemically modified chondroitin sulfate from sea cucumber reveals that the sulfated fucose branches are the structural motif for the proangiogenic activity. Heparin does not induce angiogenesis in this experimental model. We also have evidence for the proposition that endothelial cell proliferation is not the sole event involved in the in vitro FGF-2-induced angiogenesis. It implies a variety of other modifications of the endothelial cells and of their interaction with the extracellular matrix, such as integrin expression and actin cytoskeleton reorganization. Finally, the proangiogenic effect of FucCS, concomitant with its capacity to prevent venous and arterial thrombosis, in animal models makes this new glycosaminoglycan a promising molecule with possible beneficial effects in pathological conditions affecting blood vessels such as the neovascularization of ischemic areas.  相似文献   

13.
In physiological conditions, endothelial cell proliferation is strictly controlled by several growth factors, among which bFGF and VEGF are the most effective. Both bind to specific tyrosine kinase receptors and trigger intracellular signal cascades. In particular, bFGF stimulates the release of arachidonic acid (AA) and its metabolites in many types of endothelial cells in culture. In bovine aortic endothelial cells, it has been suggested that AA is released by the recruitment of cytosolic phospholipase A2 (cPLA2). AA metabolites are involved in the control of both endothelial cell motility (mostly via the cyclooxygenase pathway) and proliferation (via the lipoxygenase (LOX) cascade). On the other hand, evidence has been provided for a proliferative role of AA-induced calcium influx. By using a pharmacological approach, we have tried to elucidate the contribution to bovine aortic endothelial proliferation of the different pathways leading to production of AA and its metabolites. Two main informations were obtained by our experiments: first, AA release is not entirely due to cPLA2 involvement, but also to DAG lipase recruitment; second, cyclooxygenase derivatives play a role in the control of cell proliferation, and not only of motility. Moreover, by combining proliferation assays and single cell calcium measurements, we show that the blocking effect of carboxyamido-triazole (CAI), an inhibitor of tumor growth and angiogenesis acting on calcium influx-dependent pathways, including AA metabolism, is at least in part due to a direct effect on AA-induced calcium influx.  相似文献   

14.
15.
16.
Angiogenesis is a physiological procedure during which the new blood vessels develop from the pre-existing vessels. Uncontrolled angiogenesis is related to various diseases including cancers. Clinical inhibition of undesired angiogenesis is still under investigation. We utilized nicotinic acid, a family member of the B-vitamin niacin (vitamin B3) that has been used in the prevention and treatment of atherosclerosis or other lipid-metabolic disorders, to treat human umbilical vein endothelial cells (HUVECs) and chick chorioallantoic membrane (CAM), and investigated its influence on angiogenesis in vitro and in vivo. We found that nicotinic acid could obviously inhibit HUVEC proliferation induced by vascular endothelial growth factor. Both the in vitro and in vivo assays showed that nicotinic acid could significantly inhibit the process of angiogenesis. To further investigate the mechanism underlying the effect of nicotinic acid on angiogenesis, we found that it might function via regulating the cytoskeleton arrangements, especially the rearranging the structures of F-actin and paxillin. In summary, we discovered that nicotinic acid could obviously inhibit the process of angiogenesis by changing the angiogenesis factor expression levels and inducing the cytoskeleton rearrangement of endothelial cells.  相似文献   

17.
18.
Angiogenesis is a complex process that involves multiple cellular events. In addition to receiving inputs from a range of stimulatory and inhibitory factors, endothelial cells undergoing angiogenesis make multiple interactions with the extracellular matrix and with other cell types in the stroma. Recreating angiogenesis in vitro is probably an impossible goal; however, a number of assays have been developed that recapitulate many of the key events of the process. These assays are indispensible tools for investigating the signalling pathways that control the formation of new blood vessels. In the present paper, we review the organotypic co-culture assay of angiogenesis - until recently, a comparatively underemployed assay, but one with a number of powerful advantages for angiogenesis research. We give a set of optimized protocols for its use, including protocols for siRNA (small interfering RNA)-based screens, and we discuss appropriate methods for obtaining quantitative data from the assay.  相似文献   

19.
Eosinophils play a crucial role in allergic reactions and asthma. They are also involved in responses against parasites, in autoimmune and neoplastic diseases, and in fibroses. There is increasing evidence that angiogenesis plays an important role in these processes. Since eosinophils are known to produce angiogenic mediators, we have hypothesized a direct contribution of these cells to angiogenesis. The effect of human peripheral blood eosinophil sonicates on rat aortic endothelial cell proliferation (in vitro), rat aorta sprouting (ex vivo) and angiogenesis in the chick embryo chorioallantoic membrane (in vivo) have been investigated. To determine whether eosinophil-derived vascular endothelial growth factor influences the eosinophil pro-angiogenic activity, eosinophil sonicates were incubated with anti-vascular endothelial growth factor antibodies and then added to the chorioallantoic membrane. Vascular endothelial growth factor mRNA expression and vascular endothelial growth factor receptor density on the endothelial cells were also evaluated. Eosinophils were found to enhance endothelial cell proliferation and to induce a strong angiogenic response both in the aorta rings and in the chorioallantoic membrane assays. Pre-incubation of eosinophil sonicates with anti-vascular endothelial growth factor antibodies partially reduced the angiogenic response of these cells in the chorioallantoic membrane. Eosinophils also increased vascular endothelial growth factor mRNA production on endothelial cells. Eosinophils are able to induce angiogenesis and this effect is partially mediated by their pre-formed vascular endothelial growth factor. This strongly suggests an important role of eosinophils in angiogenesis-associated diseases such as asthma.  相似文献   

20.
Inhibitory effect of full-length human endostatin on in vitro angiogenesis.   总被引:21,自引:0,他引:21  
Endostatin, a C-terminal product of collagen XVIII, is a very powerful angiogenesis inhibitor. In vivo experiments in mice indicate that endostatin dramatically reduces tumor mass without causing the onset of any resistance to the treatment. Recently, a 12-aa shorter human endostatin has been purified from plasma, but is ineffective in in vitro angiogenesis assays. Here we report that the full-length human recombinant endostatin has a potent inhibitory activity in in vitro angiogenesis assays. Two powerful angiogenic factors were used to stimulate endothelial cells: FGF-2 and VEGF-165. Endostatin prevented cell growth both in the basal condition and after stimulation with FGF-2 or VEGF-165. Migration of microvascular endothelial cells toward FGF-2 or VEGF-165 was impaired, both when cells were pretreated with the inhibitor and when endostatin was added together with the growth factors. Furthermore, experiments of inhibition of proliferation performed on nonmicroendothelial cells showed that endostatin was ineffective. This study indicates that human endostatin is a potent angiogenesis inhibitor and suggests its use in human anticancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号