首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Several lines of evidence have implicated members of the developmentally important T-box gene family in cell cycle regulation and in cancer. Importantly, the highly related T-box factors Tbx2 and Tbx3 can suppress senescence through repressing the cyclin-dependent kinase inhibitors p19(ARF) and p21(WAF1/CIP1/SDII). Furthermore, Tbx2 is up-regulated in several cancers, including melanomas where it was shown to function as an anti-senescence factor, suggesting that this may be one of the mechanisms by which T-box proteins contribute to the oncogenic process. However, very little is known about whether Tbx2 is regulated by p21-mediated stress-induced senescence signaling pathways. In this study, using the MCF-7 breast cancer cell line known to overexpress Tbx2, we show that in response to stress induced by ultraviolet irradiation the Tbx2 protein is specifically phosphorylated by the p38 mitogen-activated protein kinase. Using site-directed mutagenesis and in vitro kinase assays, we have identified serine residues 336, 623, and 675 in the Tbx2 protein as the p38 target sites and show that these sites are phosphorylated in vivo. Importantly, we show by Western blotting, immunofluorescence, and reporter assays that this phosphorylation leads to increased Tbx2 protein levels, predominant nuclear localization of the protein, and an increase in the ability of Tbx2 to repress the p21(WAF1/CIP1/SDII) promoter. These results show for the first time that the ability of Tbx2 to repress the p21 gene is enhanced in response to a stress-induced senescence pathway, which leads to a better understanding of the regulation of the anti-senescence function of Tbx2.  相似文献   

4.
5.
6.
7.
8.
The murine tumor suppressor p19(ARF) (p14(ARF) in humans) is thought to fulfill an important protective role in preventing primary cells from oncogenic transformation via its action in the p53 pathway. Several disease-implicated regulators of p19(ARF) are known to date, among which are the T-box genes TBX2, which resides on an amplicon in primary breast tumors, and TBX3, which is mutated in the human developmental disorder Ulnar-Mammary syndrome. Here we identify a variant T-site, matching 13 of 20 nucleotides of a consensus T-site, as the essential TBX2/TBX3-binding element in the human p14(ARF) promoter. Mutant analysis indicates that both the consensus T-box and a C-terminal conserved repression domain are essential for p14(ARF) repression. Whereas the core nucleotides required for interaction of the archetypal T-box protein Brachyury with a consensus T-site are conserved in the variant site, additional flanking nucleotides contribute to the specificity of TBX2 binding. This is illustrated by the inability of TBX1A or Xbra to activate via the variant p14(ARF) T-site. Importantly, this suggests a hitherto unsuspected level of specificity associated with T-box factors and corresponding recognition sites in regulating their target genes in vivo.  相似文献   

9.
10.
11.
12.
《Genomics》1999,55(1):10-20
Brachyury(T) is a mouse mutation, first described over 70 years ago, that causes defects in mesoderm formation. Recently several related genes, the T-box gene family, that encode a similar N-terminal DNA binding domain, the T-box, and that play critical roles in human embryonic development have been identified. It has been shown that humanTBX5andTBX3,if mutated, cause developmental disorders, Holt–Oram syndrome (OMIM 142900) and ulnar-mammary syndrome (OMIM 181450), respectively. We have identified four new human members of the T-box gene family,EOMES, TBX6, TBX18,andTBX19,and these genes have been mapped to different chromosomal regions by radiation hybrid mapping. The four T-box genes were classified into four different subfamilies and have also been subjected to phylogenomic analysis. HumanEOMESmaps at 3p21.3–p21.2. ThisTbr1-subfamily gene is likely to play a significant role in early embryogenesis similar to that described forXenopus eomesodermin.HumanTBX6maps at 16p12–q12. ThisTbx6-subfamily gene is likely to participate in paraxial mesoderm formation and somitogenesis in human embryo.TBX18is a novel member of theTbx1subfamily that maps at 6q14–q15. Two subgroups,TBX1/10andTBX15/18subgroups, could be distinguished within theTbx1subfamily.TBX19is an orthologue of chickTbxTand maps at 1q23–q24. The genomic organization ofTBX19is highly similar to that of humanT(Brachyury), another human member of the same subfamily.  相似文献   

13.
14.
Zhang H  Fan CX  Song JK 《动物学研究》2012,33(2):158-164
Tbx3基因是一类重要的转录因子,在形态发生和器官形成中发挥着重要作用。该文克隆了西伯利亚鲟Tbx3基因(AbTbx3)cDNA的全长序列,该cDNA全长2908bp,包含一个2166bp的开放阅读框,编码721个氨基酸的多肽。分析表明:AbTbx3和人Tbx3的T-box结构域蛋白序列同源性达到95.2%,三维结构也具有高度的相似性。系统进化分析表明:AbTbx3与其他物种的Tbx3聚为一支,并在一个大的分支上与Tbx2聚类。半定量RT-PCR显示,AbTbx3基因从西伯利亚鲟囊胚早期即开始表达,且随着发育表达渐强,至尾芽早期表达量达到最大,随后稍有下降;在成体的眼、脑、鳃、肠、胸鳍和腹鳍中有表达,在肝、血液、心脏、肾和肌肉中均未检测到其表达。整体原位杂交表明,在37期和43期仔鱼的耳泡、后脑、松果体和后部脊索中表达量较高,同时在背鳍芽中也有表达。综上结果表明:西伯利亚鲟Tbx3与人Tbx3在结构上高度同源,在胚胎、仔鱼和成体中呈时空特异性表达。  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号