首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified acridinyl derivatives as potent aspartic protease inhibitors by virtual screening of in-house library of synthetic compounds. Enzyme inhibition experiments showed that both compounds inhibit human cathepsin D and Plasmodium falciparum plasmepsin-II in nanomolar ranges. The IC50 values against cathepsin D and plasmepsin-II of compound-Nar103 were found to be 9.0 ± 2.0 and 4.0 ± 1.0 nM and of compound-Nar110 were 0.5 ± 0.05 and 0.13 ± 0.03 nM, respectively. Ligand docking predicted the binding of acridinyl derivatives at the substrate-binding cleft, where hydrazide part of the inhibitors interact with the S1–S1′ subsite residues including catalytic aspartates. The phenyl ring and acridinyl moiety of the inhibitors were predicted to interact with S2/S3 and S2′/S3′ subsite residues.  相似文献   

2.
A series of trans-4-phenylpyrrolidine-3-carboxamides were synthesized and characterized as potent ligands of the human melanocortin-4 receptor. Interestingly, a pair of diastereoisomers 20f-1 and 20f-2 displayed potent functional agonist and antagonist activity, respectively. Thus, the 3S,4R-compound 20f-1 possessed a K(i) of 11nM and an EC(50) of 24nM, while its 3R,4S-isomer 20f-2 exhibited a K(i) of 8.6 and an IC(50) of 65nM. Both compounds were highly selective over other melanocortin receptor subtypes. The MC4R agonist 20f-1 also demonstrated efficacy in diet-induced obese rats.  相似文献   

3.
Sphingosine-1-phosphate (S1P) is a biologically active lysophospholipid with the capacity to induce a broad range of cellular responses via its interaction with the S1P family of G-protein coupled receptors. This report describes the synthesis of several potent S1P receptor agonists. For instance, compound 9c displayed an EC(50)=8.6 nM at the S1P(1) receptor using a [gamma-35S]GTP binding assay as compared to an EC(50)=4.5 nM for the endogenous ligand. We also report the effects associated with introduction of a phenyl ring between the 'linker' and 'lipophilic tail' regions of the analogues, for example total loss of activity at S1P(2) and increased agonism at S1P(5).  相似文献   

4.
A series of trans-4-phenylpyrrolidine-3-carboxamides were synthesized and characterized as potent ligands of the human melanocortin-4 receptor. Interestingly, a pair of diastereoisomers 13b displayed potent functional agonist and antagonist activity, respectively. Thus, the 3S,4R-pyrrolidine 13b-1 possessed a Ki of 1.0 nM and an EC50 of 3.8 nM, while its 3R,4S-isomer 13b-2 exhibited a Ki of 4.7 and an IC50 of 64 nM. Both compounds were highly selective over other melanocortin receptor subtypes. The MC4R agonist 13b-1 also demonstrated efficacy in a diet-induced obesity model in rats.  相似文献   

5.
The synthesis and structure-activity relationships of ureas as CCR3 antagonists are described. Optimization starting with lead compound 2 (IC(50)=190 nM) derived from initial screening hit compound 1 (IC(50)=600 nM) led to the identification of (S)-N-((1R,3S,5S)-8-((6-fluoronaphthalen-2-yl)methyl)-8-azabicyclo[3.2.1]octan-3-yl)-N-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide 27 (IC(50)=4.9 nM) as a potent CCR3 antagonist.  相似文献   

6.
Sphingosine-1-phosphate (S1P) is a biologically active lysophospholipid with the capacity to induce a broad range of cellular responses via its interaction with the S1P family of G-protein coupled receptors. A member of this receptor family, S1P(4), is highly and almost exclusively expressed in the lymphoid system and has been implicated in regulation of cell shape and motility. This report describes the synthesis of several potent benzimidazole based S1P(4) receptor selective agonists. For instance, compound 9b displayed an EC(50)=36 nM at the S1P(4) receptor using a [gamma-(35)S]GTP binding assay as compared to an EC(50)=37 nM for the endogenous ligand. We also report the effects of altering stereochemistry at the C2 position, methylation at the C1 and C2 position, and activity differences between the alcohol and phosphate head groups of the analogues.  相似文献   

7.
The novel immunosuppressant FTY720 has been demonstrated to elicit immunomodulating effects via interaction with the G-protein coupled receptor S1P(1). FTY720 induced agonism at the S1P(3) receptor, however, has been shown to result in mild bradycardia, a minor side-effect of initial FTY720 therapy. This report describes the synthesis of several potent 4(5)-phenylimidazole-based S1P(1) receptor agonists that are accompanied by poor agonist activity at S1P(3). For instance, compound 20 displayed an EC(50)=4.7+/-1.3 nM at the S1P(1) receptor and EC(50)=780+/-1.3 nM at the S1P(3) receptor using a [gamma-(35)S]GTP-binding assay as compared to phospho-FTY720 (S1P(1): EC(50)=1.3+/-1.3nM, S1P(3): EC(50)=2.0+/-2.4 nM).  相似文献   

8.
The prototypic formyl peptide N-formyl-Met-Leu-Phe (fMLF) is a major chemoattractant found in Escherichia coli culture supernatants and a potent agonist at human formyl peptide receptor (FPR) 1. Consistent with this, fMLF induces bactericidal functions in human neutrophils at nanomolar concentrations. However, it is a much less potent agonist for mouse FPR (mFPR) 1 and mouse neutrophils, requiring micromolar concentrations for cell activation. To determine whether other bacteria produce more potent agonists for mFPR1, we examined formyl peptides from Listeria monocytogenes and Staphylococcus aureus for their abilities to activate mouse neutrophils. A pentapeptide (N-formyl-Met-Ile-Val-Ile-Leu (fMIVIL)) from L. monocytogenes and a tetrapeptide (N-formyl-Met-Ile-Phe-Leu (fMIFL)) from S. aureus were found to induce mouse neutrophil chemotaxis at 1-10 nM and superoxide production at 10-100 nM, similar to the potency of fMLF on human neutrophils. Using transfected cell lines expressing mFPR1 and mFPR2, which are major forms of FPRs in mouse neutrophils, we found that mFPR1 is responsible for the high potency of fMIVIL and fMIFL. In comparison, activation of mFPR2 requires micromolar concentrations of the two peptides. Genetic deletion of mfpr1 resulted in abrogation of neutrophil superoxide production and degranulation in response to fMIVIL and fMIFL, further demonstrating that mFPR1 is the primary receptor for detection of these formyl peptides. In conclusion, the formyl peptides from L. monocytogenes and S. aureus are approximately 100-fold more potent than fMLF in activating mouse neutrophils. The ability of mFPR1 to detect bacterially derived formyl peptides indicates that this important host defense mechanism is conserved in mice.  相似文献   

9.
Eleven new sphingosine 1-phosphate receptor 2 (S1PR2) ligands were synthesized by modifying lead compound N-(2,6-dichloropyridin-4-yl)-2-(4-isopropyl-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridin-6-yl)hydrazine-1-carboxamide (JTE-013) and their binding affinities toward S1PRs were determined in vitro using [32P]S1P and cell membranes expressing recombinant human S1PRs. Among these ligands, 35a (IC50?=?29.1?±?2.6?nM) and 35b (IC50?=?56.5?±?4.0?nM) exhibit binding potency toward S1PR2 comparable to JTE-013 (IC50?=?58.4?±?7.4?nM) with good selectivity for S1PR2 over the other S1PRs (IC50?>?1000?nM). Further optimization of these analogues may identify additional and more potent and selective compounds targeting S1PR2.  相似文献   

10.
A series of cis-1(S)2(R)-amino-2-indanol based compounds with a biphenylmethyl group at the P1' position was found to be potent aggrecanase inhibitors. Both compounds 2j and 2n possessed very high aggrecanase affinity (IC(50)=1.5nM), and showed excellent selectivity over MMP-1 and MMP-9, with moderate selectivity against MMP-2.  相似文献   

11.
Novel sultam hydroxamates with potent MMP activity were transformed into potent TACE inhibitors, lacking MMP activity. To accomplish this we relied on structural differences between the MMP and TACE S1' pockets and the known advantageous fit of a 2-methyl-4-quinolinylmethoxyphenyl group into this region. From this approach, compound 7d was identified as a potent TACE inhibitor (IC50 = 3.7 nM) that lacked MMP-1, -2, -9, and -13 activity.  相似文献   

12.
A series of methyllycaconitine (1a, MLA) analogs was synthesized where the (S)-2-methylsuccinimidobenzoyl group in MLA was replaced with a (R)-2-methyl, 2,2-dimethyl-, 2,3-dimethyl, 2-phenyl-, and 2-cyclohexylsuccinimidobenzoyl (1b-f) group. The analogs 1b-f were evaluated for their inhibition of [(125)I]iodo-MLA binding at rat brain alpha7 nicotinic acetylcholine receptors (nAChR). In order to determine selectivity, MLA and the analogs 1b-f were evaluated for inhibition of binding to rat brain alpha,beta nAChR using [(3)H]epibatidine. At the alpha7 nAChR, MLA showed a K(i) value of 0.87 nM, analogs 1b-e possessed K(i) values of 1.67-2.16 nM, and 1f showed a K(i) value of 26.8 nM. Surprisingly, the analog 1e containing the large phenyl substituent (K(i)=1.67 nM) possessed the highest affinity. None of the compounds possessed appreciable affinity for alpha,beta nAChRs. MLA antagonized nicotine-induced seizures with an AD(50)=2 mg/kg. None of the MLA analogs were as potent as MLA in this assay. MLA and all of the MLA analogs, with the exception of 1b, antagonized nicotine's antinociceptive effects in the tail-flick assay. Compound 1c (K(i)=1.78 nM at alpha7 nAChR) with an AD(50) value of 1.8 mg/kg was 6.7 times more potent than MLA (AD(50)=12 mg/kg) in antagonizing nicotine's antinociceptive effects but was 5-fold less potent than MLA in blocking nicotine-induced seizures. Since MLA has been reported to show neuroprotection against beta-amyloid(1-42), these new analogs which have high alpha7 nAChR affinity and good selectivity relative to alpha,beta nAChRs will be useful biological tools for studying the effects of alpha7 nAChR antagonist and neuroprotection.  相似文献   

13.
Synthesis of hybrid HCV NS3 protease/NS4A inhibitors having the 4,4-difluoroaminobutyric acid (difluoroAbu) phenethylamides as P1-P1' and quinolyloxyprolines as P2 fragments led to 7 (IC(50) 54 nM). Molecular modelling suggests that this potent tripeptide inhibitor utilizes interactions in the S1', S1, S2, S3 and S4 sites of the protease.  相似文献   

14.
A potent, heat-stable protein inhibitor of branched-chain alpha-keto acid dehydrogenase (BCKDH) phosphatase has been identified and purified to near homogeneity from bovine kidney mitochondria (Damuni, Z., Humphreys, J. S., and Reed, L. J., Proc. Natl. Acad. Sci. U.S.A., in press). This protein is a noncompetitive inhibitor of BCKDH phosphatase, with a Ki about 0.13 nM. By contrast, this protein inhibitor did not affect the activity of the cytosolic protein phosphatase-1 and phosphatase-2A or the mitochondrial pyruvate dehydrogenase (PDH) phosphatase at concentrations up to 10 nM. The cytosolic protein phosphatase inhibitor-1 and inhibitor-2 had no effect on the activity of BCKDH phosphatase or PDH phosphatase at concentrations up to 50 and 300 nM respectively. These results, together with previous evidence, demonstrate that BCKDH phosphatase and its inhibitor protein are distinct from the cytosolic protein phosphatase-1 and phosphatase-2A and from protein phosphatase inhibitor-1 and inhibitor-2, respectively.  相似文献   

15.
Twenty eight new aryloxybenzene analogues were synthesized and their in vitro binding potencies toward S1PR2 were determined using a [32P]S1P competitive binding assay. Out of these new analogues, three compounds, 28c (IC50 = 29.9 ± 3.9 nM), 28e (IC50 = 14.6 ± 1.5 nM), and 28g (IC50 = 38.5 ± 6.3 nM) exhibited high binding potency toward S1PR2 and high selectivity over the other four receptor subtypes (S1PR1, 3, 4, and 5; IC50 > 1000 nM). Each of the three potent compounds 28c, 28e, and 28g contains a fluorine atom that will allow to develop F-18 labeled PET radiotracers for imaging S1PR2.  相似文献   

16.
A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.089nM at the μ receptor and 0.073nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists.  相似文献   

17.
Replacement of the amide functionality in IM491 (N-hydroxy-(5S,6S)-1-methyl-6-[[4-(2-methyl-4-quinolinylmethoxy)anilinyl]carbonyl]5-piperidinecarboxamide) with a sulfonyl group led to a new series of alpha,beta-cyclic and beta,beta-cyclic gamma-sulfonyl hydroxamic acids, which were potent TNF-alpha converting enzyme (TACE) inhibitors. Among them, inhibitor 4b (N-hydroxy-(4S,5S)-1-methyl-5-[[4-(2-methyl-4-quinolinylmethoxy)phenyl]sulfonylmethyl]-4-pyrrolidinecarboxamide) exhibited IC50 values of < 1 nM and 180 nM in porcine TACE (pTACE) and cell assays, respectively, with excellent selectivity over MMP-1, -2, -9 and -13 and was orally bioavailable with an F value of 46% in mice.  相似文献   

18.
The stereoselectivity of carvedilol, a novel beta-adrenoceptor antagonist and vasodilator with one asymmetric carbon atom, was examined at alpha 1- and beta 1-adrenoceptors in vitro and in vivo. (-)-(S)-Carvedilol is a potent, competitive antagonist of the beta 1-adrenoceptor-mediated positive chronotropic response to isoproterenol in guinea pig atrium, with a dissociation constant (KB) of 0.4 nM. (+)-(R)-Carvedilol was more than 100-fold less potent than the (-)-S-enantiomer as an antagonist of beta 1-andrenoceptors, having a KB of approximately 45 nM. Consistent with these findings (-)-(S)-carvedilol (0.1 mg/kg, i.v.) produced a 25-fold rightward shift in the beta 1-adrenoceptor-mediated positive chronotropic response to isoproterenol in pithed rats, whereas the (+)-R-enantiomer had no beta 1-adrenoceptor blocking activity in vivo at this dose. In contrast to the marked degree of stereoselectivity observed at beta 1-adrenoceptors, both (-)-(S)- and (+)-(R)-carvedilol produced equal antagonism of the alpha 1-adrenoceptor-mediated vasoconstrictor response to norepinephrine in rabbit aorta, with KB values of 14 and 16 nM, respectively. Furthermore, in the pithed rat, the alpha 1-adrenoceptor-mediated pressor dose-response curve to cirazoline was shifted approximately 6-fold to the right by both the (+)-R- and (-)-S-enantiomers of carvedilol at a dose of 1 mg/kg, i.v. In anesthetized spontaneously hypertensive rats, (-)-(S)-carvedilol was 6-fold more potent as an antihypertensive than (+)-(R)-carvedilol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
(2S,3R,4R,5S,6R)-2-Aryl-5,5-difluoro-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols and (2S,3R,4R,5S,6R)-2-aryl-5-fluoro-5-methyl-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols were discovered as dual inhibitors of sodium glucose co-transporter proteins (e.g. SGLT1 and SGLT2) through rational drug design, efficient synthesis, and in vitro and in vivo evaluation. Compound 6g demonstrated potent dual inhibitory activities (IC50 = 96 nM for SGLT1 and IC50 = 1.3 nM for SGLT2). It showed robust inhibition of blood glucose excursion in an oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats when dosed at both 1 mg/kg and 10 mg/kg orally. It also demonstrated postprandial glucose control in db/db mice when dosed orally at 10 mg/kg.  相似文献   

20.
Structure-activity relationships of 2-phenyl-imidazo[2,1-i]purin-5-ones as ligands for human A(3) adenosine receptors (ARs) were investigated. An ethyl group in the 8-position of the imidazoline ring of 4-methyl-2-phenyl-imidazopurinone leading to chiral compounds was found to increase affinity for human A(3) ARs by several thousand-fold. Propyl substitution instead of methyl at N4 decreased A(3) affinity but increased A(1) affinity leading to potent A(1)-selective AR antagonists. The most potent A(1) antagonist of the present series was (S)-8-ethyl-2-phenyl-4-propyl-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (S-3) exhibiting a K(i) value of 7.4 nM at rat A(1) ARs and greater than 100-fold selectivity versus rat A(2A) and human A(3) ARs. At human A(1) ARs 2-phenylimidazo[2,1-i]purin-5-ones were generally less potent and therefore less A(1)-selective (S-3: K(i)=98 nM). 2-, 3-, or 4-Mono-chlorination of the 2-phenyl ring reduced A(3) affinity but led to an increase in affinity for A(1) ARs, whereas di- (3,4-dichloro) or polychlorination (2,3,5-trichloro) increased A(3) affinity. The most potent and selective A(3) antagonist of the present series was the trichlorophenyl derivative (R)-8-ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (R-8) exhibiting a subnanomolar K(i) value at human A(3) ARs and greater than 800-fold selectivity versus the other AR subtypes. Methylation of 4-alkyl-2-phenyl-substituted imidazo[2,1-i]purin-5-ones led exclusively to the N9-methyl derivatives, which exhibited largely reduced AR affinities as compared to the unmethylated compounds. [35S]GTP gamma S binding studies of the most potent 2-phenyl-imidazo[2,1-i]purin-5-ones at membranes of Chinese hamster ovary cells expressing the human A(3) AR revealed that the compounds were inverse agonists at A(3) receptors under standard test conditions. Due to their high A(3) affinity, selectivity, and relatively high water-solubility, 2-phenyl-imidazo[2,1-i]purin-5-ones may become useful research tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号