首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Failure to induce over-compensation of growth in maturing yellow perch   总被引:2,自引:0,他引:2  
Unlike juvenile F1 male bluegill Lepomis macrochrus × female green sunfish L. cyanellus , maximized episodes of compensatory growth (CG) in 2 year yellow perch Perca flavescens did not surpass control masses because internal regulation caused abrupt appetite reduction upon catch-up. Together, the hybrid sunfish study and present work indicate that CG-maximizing feeding schedules and absence of an internal growth limiting mechanism are both required to produce substantial growth overcompensation (GOC). The less vigorous and less resilient CG responses of the yellow perch relative to those of the similarly fed hybrid sunfish appear indicative of the lack of GOC capacity in the former. This contrast, and results of previous studies are interpreted to suggest that GOC capacity may be limited to early life stages of fishes which have a substantial reproductive potential but are at high risk of mortality due to their small size. The possibility that GOC capacity is time-of-year-dependent and species-specific is considered also. Food deprivation periods that produced the strongest CG responses differed for male (2 days) and female (12 days) yellow perch. Among controls fed without restriction, growth rate and growth efficiency of female yellow perch exceeded those of males two-fold, however, males showed a greater capacity to catch-up to same-sex controls when undergoing CG. A feeding schedule using maintenance feeding v. food deprivation to elicit CG yielded the most rapid catch-up to control masses in the yellow perch. Such feeding schedules may produce even greater GOC than was achieved previously in hybrid sunfish, where feeding schedules involving food deprivation were employed.  相似文献   

2.
Food availability can vary widely for animals in nature and can have large effects on growth, reproduction and survival. While the consequences of food limitation for animals have been extensively studied, significant questions still remain including how ontogenetic variation in food availability contributes to lifetime reproductive success. We tested the effects of juvenile and adult food limitation on the lifetime reproductive success and lifespan of bridge spiders, Larinioides sclopetarius. Food availability was manipulated (low or high) over the entire juvenile and adult stage in a full‐factorial design and reproductive output and lifespan were measured. Juvenile and adult food limitation both reduced lifetime egg and hatchling production with effect sizes that were not significantly different from each other. Unlike some other arthropods, where juvenile food limitation reduces fecundity by reducing adult body size, body size was not affected by juvenile diet in bridge spiders. Clutch size was also significantly reduced by both juvenile and adult food limitation. The effect of adult diet on clutch size was stronger than that of juvenile diet. Juvenile and adult food limitation both extended total lifespan, and adult food limitation extended adult longevity (i.e. time from maturation to death). However, juvenile food limitation decreased adult longevity, in contrast to what would be predicted by dietary or caloric restriction. Compensatory feeding and growth are widely recognized mechanisms through which animals can ameliorate some of the negative effects of periods of food limitation. Yet our results combined with studies of a range of other species suggest that there may be lasting consequences of juvenile food limitation on lifetime reproductive success that cannot be compensated for by adult feeding in some species.  相似文献   

3.
Crawford D  Libina N  Kenyon C 《Aging cell》2007,6(5):715-721
Dietary restriction extends lifespan and inhibits reproduction in many species. In Caenorhabditis elegans, inhibiting reproduction by germline removal extends lifespan. Therefore, we asked whether the effect of dietary restriction on lifespan might proceed via changes in the activity of the germline. We found that dietary restriction could increase the lifespan of animals lacking the entire reproductive system. Thus, dietary restriction can extend lifespan independently of any reproductive input. However, dietary restriction produced little or no increase in the long lifespan of animals that lack germ cells. Thus, germline removal and dietary restriction may potentially activate lifespan-extending pathways that ultimately converge on the same downstream longevity mechanisms. In well-fed animals, the somatic reproductive tissues are generally completely required for germline removal to extend lifespan. We found that this was not the case in animals subjected to dietary restriction. In addition, in these animals, loss of the germline could either further lengthen lifespan or shorten lifespan, depending on the genetic background. Thus, nutrient levels play an important role in determining how the reproductive system influences longevity.  相似文献   

4.
Food intake carries many potential risks which may impair an animal's reproductive success not only in the current breeding cycle, but also for the rest of its lifetime. We examine the lifetime trade-off between the costs and benefits of food intake by presenting a simple animal foraging model, where each unit of food eaten carries with it a risk of mortality. We show that the optimal food intake rate over an animal's lifetime, for both semelparous and iteroparous animals, is not maximal. Instead, animals are required to strike a balance between the immediate reproductive benefits of gathering food and the future reproductive costs incurred by the food's mortality risk. This balance depends upon the lifespan of the animal as well as the nature of the risk. Different mortality risks are compared and it is shown that a mortality risk per unit time spent foraging is not, in general, equivalent to a mortality risk per unit of food consumed. The results suggest that a mortality risk per unit of food consumed, such as that presented by the presence of a toxin or of a parasite in the diet, has important consequences for feeding behaviour and is a possible factor involved in food intake regulation.  相似文献   

5.
Lifespan extension in Caenorhabditis elegans by complete removal of food   总被引:4,自引:0,他引:4  
A partial reduction in food intake has been found to increase lifespan in many different organisms. We report here a new dietary restriction regimen in the nematode Caenorhabditis elegans, based on the standard agar plate lifespan assay, in which adult worms are maintained in the absence of a bacterial food source. These findings represent the first report in any organism of lifespan extension in response to prolonged starvation. Removal of bacterial food increases lifespan to a greater extent than partial reduction of food through a mechanism that is distinct from insulin/IGF-like signaling and the Sir2-family deacetylase, SIR-2.1. Removal of bacterial food also increases lifespan when initiated in postreproductive adults, suggesting that dietary restriction started during middle age can result in a substantial longevity benefit that is independent of reproduction.  相似文献   

6.
Ad libitum (AL) supply of standard chow is the feeding method most often used for rodents in animal experiments. However, AL feeding is known to result in a shorter lifespan and decreased health as compared with restricted feeding. Restricted feeding and thus limiting calorie intake prevents many health problems, increases lifespan and can also increase group uniformity. All this leads to a reduced number of animals needed. So-called standard chows are known to be prone to variation in composition. Synthetic foods have a more standard composition, contributing to group uniformity which, like diet reduction, may decrease the number of animals necessary to obtain statistical significance. In this study, we compared the effects of AL versus restricted feeding (25% reduction in food intake) on standard chow versus synthetic food of three different suppliers on body weight (BW), growth, several blood parameters and organ weights in growing female Wistar rats over a period of 61 days. Diet restriction led to a decreased growth and significantly reduced variation in BW and growth as compared with AL feeding. AL feeding on synthetic diets caused a significantly higher BW gain than on chow diets. Due to experimental design, this same effect occurred on food restriction. Blood parameters and organ weights were affected neither by diet type nor by amount. Incidentally, variations were significantly reduced on food restriction versus AL, and on synthetic diets versus chow diets. This study demonstrates that food restriction versus AL feeding leads to a significantly reduced variation in BW and growth, thereby indicating the potential for reduction when applying this feeding schedule.  相似文献   

7.
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal.  相似文献   

8.
A reduction in dietary calories has been shown to prolong life span in a wide variety of taxa, but there has been much debate about confounding factors such as nutritional composition of the diet, or reallocation of nutrients from reduced reproduction. To disentangle the contribution of these different mechanisms to extension of life span, we study the effect of caloric restriction on longevity and fecundity in two species of sugar-feeding parasitoid wasps. They have a simple diet that consists of carbohydrates only, and they do not resorb eggs, which rules out the proposed alternative explanations for beneficial effects of caloric restriction. Two caloric restriction treatments were applied: first, dietary dilution to investigate the effect of carbohydrate concentration in the diet; and second, intermittent feeding to examine the effect of feeding frequency on longevity and fecundity. Only the dietary dilution treatment showed an effect of caloric restriction with the highest longevity recorded at 80% sucrose (w/v). No effect of dietary regime was found on fecundity. We also measured the weight increase of the parasitoids after feeding to obtain an estimate of consumption. A constant quantity of the sugar solution was consumed in all dietary dilution treatments, hence caloric intake was proportional to sucrose concentrations. Although the present study does not disqualify the relevance of nutrient composition in other species, our data unequivocally demonstrate that caloric restriction alone is sufficient to extend life span and invalidate alternative explanations.  相似文献   

9.
The effects of food restriction on predation risk-taking behaviorwere studied in juvenile coho salmon, Oncorhyndtus kisutch,during the period before seawater migration in the spring. Aradiographic technique enabled the study of individual foodintake in a safe and risky food patch before and after exposureto a piscivorous predator. The study revealed a significantincrease in food intake and specific growth rate in the weeksfollowing deprivation, resulting in compensatory growth anda recovery of the weight loss caused by dietary restriction.The increase in food intake resulted from a change in risk-takingbehavior. Following a period of diet restriction, the fish habituatedfalter after predator exposure, and the proportion of fish inthe risky patch was significantly higher than before deprivation.Deprived fish took greater shares of the group meal comparedwith control fish, and the pattern of the individual share ofthe group meal after food restriction indicated a change inthe social hierarchy. This study indicates that risk-takingbehavior is state dependent and changes temporarily to compensatefor a period of food restriction. The results are discussedin terms of tradeoffs between food and risk in a period leadingup to an ontogenetic habitat shift.  相似文献   

10.
Energetic demands of social communication signals can constrain signal duration, repetition, and magnitude. The metabolic costs of communication signals are further magnified when they are coupled to active sensory systems that require constant signal generation. Under such circumstances, metabolic stress incurs additional risk because energy shortfalls could degrade sensory system performance as well as the social functions of the communication signal. The weakly electric fish Eigenmannia virescens generates electric organ discharges (EODs) that serve as both active sensory and communication signals. These EODs are maintained at steady frequencies of 200–600 Hz throughout the lifespan, and thus represent a substantial metabolic investment. We investigated the effects of metabolic stress (food deprivation) on EOD amplitude (EODa) and EOD frequency (EODf) in E. virescens and found that only EODa decreases during food deprivation and recovers after restoration of feeding. Cortisol did not alter EODa under any conditions, and plasma cortisol levels were not changed by food deprivation. Both melanocortin hormones and social challenges caused transient EODa increases in both food-deprived and well-fed fish. Intramuscular injections of leptin increased EODa in food-deprived fish but not well-fed fish, identifying leptin as a novel regulator of EODa and suggesting that leptin mediates EODa responses to metabolic stress. The sensitivity of EODa to dietary energy availability likely arises because of the extreme energetic costs of EOD production in E. virescens and also could reflect reproductive strategies of iteroparous species that reduce social signaling and reproduction during periods of stress to later resume reproductive efforts when conditions improve.  相似文献   

11.
Curcumin feeding of Drosophila larvae or young adults inhibits TOR and other known longevity genes and induces an extended health span in a normal-lived Ra strain adult. Combining larval curcumin feeding with an adult dietary restriction (DR) diet does not yield an additive effect. The age-specific mortality rate is decreased and is comparable with that of genetically selected long-lived La animals. Feeding Ra adults with the drug their whole life, or only during the senescent span, results in a weak negative effect on median longevity with no increase in maximum lifespan. The La strain shows no response to this DR mimetic. Thus, curcumin acts in a life stage-specific manner to extend the health span. Histone deacetylase inhibitors decrease the longevity of Ra animals if administered over the health span only or over the entire adult lifespan, but these inhibitors increase longevity when administered in the transition or senescent spans. Their major effect is a reduction in the mortality rate of older flies, raising the possibility of reducing frailty in older organisms. Their life stage-specific effects are complementary to that of curcumin. Use of stage-specific drugs may enable targeted increases in health or senescent spans, and thus selectively increase the quality of life.  相似文献   

12.
The highly conserved effect of dietary protein restriction on lifespan and ageing is observed in both sexes and across a vast range of taxa. This extension of lifespan is frequently accompanied by a reduction in female fecundity, and it has been hypothesized that individuals may reallocate resources away from reproduction and into somatic maintenance. However, effects of dietary protein restriction on male reproduction are less consistent, suggesting that these effects may depend on other environmental parameters. Using the neriid fly, Telostylinus angusticollis, we examined age‐specific effects of adult dietary protein restriction on male post‐copulatory reproductive performance (fecundity and offspring viability). To explore the context dependence of these effects, we simultaneously manipulated male larval diet and adult mating history. We found that protein‐restricted males sired less viable offspring at young ages, but offspring viability increased with paternal age and eventually exceeded that of fully fed males. The number of eggs laid by females was not affected by male dietary protein, whereas egg hatching success was subject to a complex interaction of male adult diet, age, larval diet and mating history. These findings suggest that effects of protein restriction on male reproduction are highly context dependent and cannot be explained by a simple reallocation of resources from reproduction to somatic maintenance. Rather, these effects appear to involve changes in the scheduling of male reproductive investment with age.  相似文献   

13.
Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance.  相似文献   

14.
Alternating periods of food deprivation with those of unlimited provision of food depressed the growth of Arctic charr, Salvelinus alpinus , below that of controls. Fish that were deprived of food and then fed on alternate weeks (1:1) were larger than those that were exposed to periods of 1 5- or 3-week deprivation and feeding (1·5:1·5 or 3:3). On receiving excess food supplies following 24 weeks on the restricted feeding regimes the previously-restricted fish grew more rapidly than the controls. The greatest compensatory growth was displayed after the 3:3 regime, followed by the 1·5: 1·5 and then the 1:1 feeding regime. At the termination of the experiment there were no significant differences in body weight between fish fed according to the different regimes during the period that food restriction was imposed. Growth patterns of the immature males and females were similar, but mature males were significantly lighter than the immature fish by the end of the experiment. Both immature and maturing fish displayed a compensatory growth response on return to adequate feeding. Beginning food restriction in May did not influence the proportions of male fish ( c . 60%) which were mature in the autumn.  相似文献   

15.
A study of lifespan, fecundity, and reproductive schedules was carried out with the rotifer Brachionus calyciflorus under different food concentrations. At high food densities (6.1 to 12.4 μg · ml−1, dry mass) there was an increase in offspring number but the reproductive investment remained constantly. This was possible because Brachionus calyciflorus invested a smaller amount of energy one egg volume being able to increase offspring number. Although egg volume was reduced, this was compensated by the greater amount of energy available to the neonates. The length of the prereproductive period remained constant throughout this range of food concentrations. Within this range a reduction in lifespan was observed. This, however, was not due to a total higher reproductive investment, but to an increased offspring rate production resulting in a shortening of the reproductive period. The length of the post-reproductive period was not different at all food concentrations.  相似文献   

16.
Fast growth can be costly, so trade-offs between growth and fitness are to be predicted when organisms adjust their growth to compensate for earlier environmental conditions. We developed four generic models of increasing complexity with different processes to predict the indeterminate growth of vertebrate ectotherms, which is sensitive to ambient temperature even when food is not limiting. We contrast the predictions of the models with observed experimental data on growth trajectories, feeding activity, and reproductive investment of three-spined sticklebacks and inferred patterns of accumulation of biomolecular damage arising from activity and growth. All models predicted observed patterns of compensatory growth (both accelerating and decelerating) in response to earlier temperature perturbations, but the more complex models provided the best fit to experimental data. Growth trajectories influenced future reproductive investment regardless of final body size at breeding. Our findings suggest that while models with fewer parameters can predict basic patterns of growth in stable conditions, they cannot capture the costly long-term effects of deviations from steady growth trajectories. In contrast, models in which foraging activity is assumed to carry costs are capable of predicting the complex patterns of feeding, growth, and reproductive investment seen in animals, with the cost of a heightened mortality risk (e.g., through predation) being more important than the cost of increased physiological damage.  相似文献   

17.
Dietary restriction extends the lifespan of numerous, evolutionarily diverse species. In D. melanogaster, a prominent model for research on the interaction between nutrition and longevity, dietary restriction is typically based on medium dilution, with possible compensatory ingestion commonly being neglected. Possible problems with this approach are revealed by using a method for direct monitoring of D. melanogaster feeding behavior. This demonstrates that dietary restriction elicits robust compensatory changes in food consumption. As a result, the effect of medium dilution is overestimated and, in certain cases, even fully compensated for. Our results strongly indicate that feeding behavior and nutritional composition act concertedly to determine fly lifespan. Feeding behavior thus emerges as a central element in D. melanogaster aging.  相似文献   

18.
Weithoff G 《Oecologia》2007,153(2):303-308
According to resource allocation theory, animals face a trade off between the allocation of resources into reproduction and into individual growth/maintenance. This trade off is reinforced when food conditions decline. It is well established in biological research that many animals increase their life span when food is in suboptimal supply for growth and/or reproduction. Such a situation of reduced food availability is called dietary restriction. An increase in life span under dietary restricted conditions is seen as a strategy to tolerate periods of food shortage so that the animals can start reproduction again when food is in greater supply. In this study, the effect of dietary restriction on life span and reproduction in two rotifer species, Cephalodella sp. and Elosa worallii, was investigated using life table experiments. The food concentration under dietary restricted conditions was below the threshold for population growth. It was (1) tested whether the rotifers start reproduction again after food replenishment, and (2) estimated whether the time scale of dietary restricted conditions is relevant for the persistence of a population in the field. Only E. worallii responded to dietary restriction with an increase in life span at the expense of reproduction. After replenishment of food, E. worallii started to reproduce again within 1 day. With an increase in the duration of dietary restricted conditions of up to 15 days, which is longer than the median life span of E. worallii under food saturation, the life span increased and the life time reproduction decreased. These results suggest that in a temporally (or spatially) variable environment, some rotifer populations can persist even during long periods of severe food deprivation.  相似文献   

19.
Life history characteristics and resulting fitness consequences manifest not only in an individual experiencing environmental conditions but also in its offspring via trans-generational effects. We conducted a set of experiments to assess the direct and trans-generational effects of food deprivation in the Glanville fritillary butterfly Melitaea cinxia. Food availability was manipulated during the final stages of larval development and performance was assessed during two generations. Direct responses to food deprivation were relatively minor. Food-deprived individuals compensated, via increased development time, to reach a similar mass as adults from the control group. Delayed costs of compensatory growth were observed, as food-deprived individuals had either reduced fecundity or lifespan depending on the type of feeding treatment they had experienced (intermittent vs. continuous). Female food deprivation did not directly affect her offspring’s developmental trajectory, but the way the offspring coped with food deprivation. Offspring of mothers from control or intermittent starvation treatments reached the size of those in the control group via increased development time when being starved. In contrast, offspring of mothers that had experienced 2 days of continuous food deprivation grew even larger than control animals, when deprived of food themselves. Offspring of food-deprived Glanville fritillary initially showed poor immune response to parasitism, but not later on in development.  相似文献   

20.
The interaction of longevity‐conferring genes with longevity‐conferring diets is poorly understood. The growth hormone receptor gene‐disrupted (GHR‐KO) mouse is long lived; and this longevity is not responsive to 30% caloric restriction, in contrast to wild‐type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction, we subjected GHR‐KO mice to a different dietary restriction regimen, an intermittent fasting diet. The intermittent fasting diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR‐KO mice. From the results of two paradigms of dietary restriction, we postulate that GHR‐KO mice would be resistant to any manner of dietary restriction; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan extending potential of an intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号