首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin polymerization has been shown to occur in tracheal smooth muscle tissues and cells in response to contractile stimulation, and there is evidence that the polymerization of actin is required for contraction. In tracheal smooth muscle, agonist-induced actin polymerization is mediated by activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp) and the Arp (actin-related protein) 2/3 complex, and activation of the small GTPase Cdc42 regulates the activation of N-WASp. In the present study, the role of the adapter protein CrkII in the regulation of N-WASp and Cdc42 activation, actin polymerization, and tension development in smooth muscle tissues was evaluated. Stimulation of tracheal smooth muscle tissues with acetylcholine increased the association of CrkII with N-WASp. Plasmids encoding wild type CrkII or a CrkII mutant lacking the SH3 effector-binding ability, CrkII SH3N, were introduced into tracheal smooth muscle tissues, and the tissues were incubated for 2 days to allow for protein expression. Expression of the CrkII SH3N mutant in smooth muscle tissues inhibited the association of CrkII with N-WASp and the activation of Cdc42. The CrkII SH3N mutant also inhibited the increase in the association of N-WASp with Arp2, a major component of the Arp2/3 complex, in response to contractile stimulation, indicating inhibition of N-WASp activation. Expression of the CrkII SH3N mutant also inhibited tension generation and actin polymerization in response to contractile stimulation; however, it did not inhibit myosin light chain phosphorylation. These results suggest that CrkII plays a critical role in the regulation of N-WASp activation, perhaps by regulating the activation of Cdc42, and that it thereby regulates actin polymerization and active tension generation in tracheal smooth muscle. These studies suggest a novel signaling pathway for the regulation of N-WASp activation and active contraction in smooth muscle tissues.  相似文献   

2.
The contractile stimulation of smooth muscle tissues stimulates the recruitment of proteins to membrane adhesion complexes and the initiation of actin polymerization. We hypothesized that integrin-linked kinase (ILK), a beta-integrin-binding scaffolding protein and serine/threonine kinase, and its binding proteins, PINCH, and alpha-parvin may be recruited to membrane adhesion sites during contractile stimulation of tracheal smooth muscle to mediate cytoskeletal processes required for tension development. Immunoprecipitation analysis indicted that ILK, PINCH, and alpha-parvin form a stable cytosolic complex and that the ILK.PINCH.alpha-parvin complex is recruited to integrin adhesion complexes in response to acetylcholine (ACh) stimulation where it associates with paxillin and vinculin. Green fluorescent protein (GFP)-ILK and GFP-PINCH were expressed in tracheal muscle tissues and both endogenous and recombinant ILK and PINCH were recruited to the membrane in response to ACh stimulation. The N-terminal LIM1 domain of PINCH binds to ILK and is required for the targeting of the ILK-PINCH complex to focal adhesion sites in fibroblasts during cell adhesion. We expressed the GFP-PINCH LIM1-2 fragment, consisting only of LIM1-2 domains, in tracheal smooth muscle tissues to competitively inhibit the interaction of ILK with PINCH. The PINCH LIM1-2 fragment inhibited the recruitment of endogenous ILK and PINCH to integrin adhesion sites and prevented their association of ILK with beta-integrins, paxillin, and vinculin. The PINCH LIM1-2 fragment also inhibited tension development, actin polymerization, and activation of the actin nucleation initiator, N-WASp. We conclude that the recruitment of the ILK.PINCH.alpha-parvin complex to membrane adhesion complexes is required to initiate cytoskeletal processes required for tension development in smooth muscle.  相似文献   

3.
The contractile activation of airway smooth muscle tissues stimulates actin polymerization, and the inhibition of actin polymerization inhibits tension development. Actin-depolymerizing factor (ADF) and cofilin are members of a family of actin-binding proteins that mediate the severing of F-actin when activated by dephosphorylation at serine 3. The role of ADF/cofilin activation in the regulation of actin dynamics and tension development during the contractile activation of smooth muscle was evaluated in intact canine tracheal smooth muscle tissues. Two-dimensional gel electrophoresis revealed that ADF and cofilin exist in similar proportions in the muscle tissues, and that approximately 40% of the total ADF/cofilin in unstimulated tissues is phosphorylated. Phospho-ADF/cofilin decreased concurrently with tension development in response to stimulation with acetylcholine (ACh) or potassium depolarization indicating the activation of ADF/cofilin. Expression of an inactive phospho-cofilin mimetic (cofilin S3E) but not wild type cofilin in the smooth muscle tissues inhibited endogenous ADF/cofilin dephosphorylation and ACh-induced actin polymerization. Expression of cofilin S3E in the tissues depressed tension development in response to ACh, but it did not affect myosin light chain phosphorylation. The ACh-induced dephosphorylation of ADF/cofilin required the Ca2+-dependent activation of calcineurin (PP2B). The results indicate that the activation of ADF/cofilin is regulated by contractile stimulation in tracheal smooth muscle and that cofilin activation is required for actin polymerization and tension development in response to contractile stimulation.  相似文献   

4.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery.  相似文献   

5.
The actin filament (F-actin) cytoskeleton associates dynamically with the plasma membrane and is thus ideally positioned to participate in endocytosis. Indeed, a wealth of genetic and biochemical evidence has confirmed that actin interacts with components of the endocytic machinery, although its precise function in endocytosis remains unclear. Here, we use 4D microscopy to visualize the contribution of actin during compensatory endocytosis in Xenopus laevis eggs. We show that the actin cytoskeleton maintains exocytosing cortical granules as discrete invaginated compartments, such that when actin is disrupted, they collapse into the plasma membrane. Invaginated, exocytosing cortical granule compartments are directly retrieved from the plasma membrane by F-actin coats that assemble on their surface. These dynamic F-actin coats seem to drive closure of the exocytic fusion pores and ultimately compress the cortical granule compartments. Active Cdc42 and N-WASP are recruited to exocytosing cortical granule membranes before F-actin coat assembly and coats assemble by Cdc42-dependent, de novo actin polymerization. Thus, F-actin may power fusion pore resealing and function in two novel endocytic capacities: the maintenance of invaginated compartments and the processing of endosomes.  相似文献   

6.
Engagement of the costimulatory molecule CD28 is an important step in the optimal activation of T cells. Nevertheless, the specific role of CD28 in the formation of the immunological synapse and cytoskeletal changes that occur upon TCR/CD3 complex engagement is still poorly understood. Using Ab-coated surfaces, we show that CD28 engagement in the absence of any other signal induced the formation of cytoplasmic elongations enriched in filamentous actin (F-actin), in this work called filopodia or microspikes. Such structures were specific for engagement of CD28 on mAb-coated surfaces because they could not be observed in surfaces coated with either poly(L-lysine) or anti-CD3 mAb. The signaling pathway coupling CD28 to cytoskeletal rearrangements required Src-related kinase activity and promoted Vav phosphorylation and Cdc42 activation independently of the zeta-chain-associated kinase (ZAP-70). CD28-induced filopodia required Cdc42 GTPase activity, but not the related Rho GTPase Rac1. Moreover, Cdc42 colocalized to areas of increased F-actin. Our results support a specific role for the activation of the small Rho GTPase Cdc42 in the actin reorganization mediated by CD28 in human T cells.  相似文献   

7.
Profilin enhances Cdc42-induced nucleation of actin polymerization   总被引:1,自引:0,他引:1  
We find that profilin contributes in several ways to Cdc42-induced nucleation of actin filaments in high speed supernatant of lysed neutrophils. Depletion of profilin inhibited Cdc42-induced nucleation; re-addition of profilin restored much of the activity. Mutant profilins with a decreased affinity for either actin or poly-l-proline were less effective at restoring activity. Whereas Cdc42 must activate Wiskott-Aldrich Syndrome protein (WASP) to stimulate nucleation by the Arp2/3 complex, VCA (verpolin homology, cofilin, and acidic domain contained in the COOH-terminal fragment of N-WASP) constitutively activates the Arp2/3 complex. Nucleation by VCA was not inhibited by profilin depletion. With purified N-WASP and Arp2/3 complex, Cdc42-induced nucleation did not require profilin but was enhanced by profilin, wild-type profilin being more effective than mutant profilin with reduced affinity for poly-l-proline.Nucleation by the Arp2/3 complex is a function of the free G-actin concentration. Thus, when profilin addition decreased the free G-actin concentration, it inhibited Cdc42- and VCA-induced nucleation. However, when profilin was added with G-actin in a ratio that maintained the initial free G-actin concentration, it increased the rate of both Cdc42- and VCA-induced nucleation. This enhancement, also seen with purified proteins, was greatest when the free G-actin concentration was low. These data suggest that under conditions present in intact cells, profilin enhances nucleation by activated Arp2/3 complex.  相似文献   

8.
Signaling mechanisms forstretch-dependent growth and differentiation of vascular smooth musclewere investigated in mechanically loaded rat portal veins in organculture. Stretch-dependent protein synthesis was found to depend onendogenous release of angiotensin II. Autoradiography after[35S]methionine incorporation revealed stretch-dependentsynthesis of several proteins, of which SM22 and actin wereparticularly prominent. Inhibition of RhoA activity by cell-permeant C3toxin increased tissue mechanical compliance and reducedstretch-dependent extracellular signal-regulated kinase (ERK)1/2activation, growth, and synthesis of actin and SM22, suggesting a roleof the actin cytoskeleton. In contrast, inhibition of Rho-associatedkinase by Y-27632 did not reduce ERK1/2 phosphorylation or actin and SM22 synthesis and did not affect tissue mechanical compliance butstill inhibited overall growth. The actin polymerization inhibitors latrunculin B and cytochalasin D both inhibited growth and caused increased tissue compliance. Whereas latrunculin Bconcentration-dependently reduced actin and SM22 synthesis,cytochalasin D did so at low (108 M) but not at high(106 M) concentration. The results show that stretchstabilizes the contractile smooth muscle phenotype. Stretch-dependentdifferentiation marker expression requires an intact cytoskeleton forstretch sensing, control of protein expression via the level ofunpolymerized G-actin, or both.

  相似文献   

9.
Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton.  相似文献   

10.
We have previously shown that actin ligands inhibit the fusion of yeast vacuoles in vitro, which suggests that actin remodeling is a subreaction of membrane fusion. Here, we demonstrate the presence of vacuole-associated actin polymerization activity, and its dependence on Cdc42p and Vrp1p. Using a sensitive in vitro pyrene-actin polymerization assay, we found that vacuole membranes stimulated polymerization, and this activity increased when vacuoles were preincubated under conditions that support membrane fusion. Vacuoles purified from a VRP1-gene deletion strain showed reduced polymerization activity, which could be recovered when reconstituted with excess Vrp1p. Cdc42p regulates this activity because overexpression of dominant-negative Cdc42p significantly reduced vacuole-associated polymerization activity, while dominant-active Cdc42p increased activity. We also used size-exclusion chromatography to directly examine changes in yeast actin induced by vacuole fusion. This assay confirmed that actin undergoes polymerization in a process requiring ATP. To further confirm the need for actin polymerization during vacuole fusion, an actin polymerization-deficient mutant strain was examined. This strain showed in vivo defects in vacuole fusion, and actin purified from this strain inhibited in vitro vacuole fusion. Affinity isolation of vacuole-associated actin and in vitro binding assays revealed a polymerization-dependent interaction between actin and the SNARE Ykt6p. Our results suggest that actin polymerization is a subreaction of vacuole membrane fusion governed by Cdc42p signal transduction.  相似文献   

11.
Cytoskeletal reorganization of the smooth muscle cell in response to contractile stimulation may be an important fundamental process in regulation of tension development. We used confocal microscopy to analyze the effects of cholinergic stimulation on localization of the cytoskeletal proteins vinculin, paxillin, talin and focal adhesion kinase (FAK) in freshly dissociated tracheal smooth muscle cells. All four proteins were localized at the membrane and throughout the cytoplasm of unstimulated cells, but their concentration at the membrane was greater in acetylcholine (ACh)-stimulated cells. Antisense oligonucleotides were introduced into tracheal smooth muscle tissues to deplete paxillin protein, which also inhibited contraction in response to ACh. In cells dissociated from paxillin-depleted muscle tissues, redistribution of vinculin to the membrane in response to ACh was prevented, but redistribution of FAK and talin was not inhibited. Muscle tissues were transfected with plasmids encoding a paxillin mutant containing a deletion of the LIM3 domain (paxillin LIM3 dl 444–494), the primary determinant for targeting paxillin to focal adhesions. Expression of paxillin LIM3 dl in muscle tissues also inhibited contractile force and prevented cellular redistribution of paxillin and vinculin to the membrane in response to ACh, but paxillin LIM3 dl did not inhibit increases in intracellular Ca2+ or myosin light chain phosphorylation. Our results demonstrate that recruitment of paxillin and vinculin to smooth muscle membrane is necessary for tension development and that recruitment of vinculin to the membrane is regulated by paxillin. Vinculin and paxillin may participate in regulating the formation of linkages between the cytoskeleton and integrin proteins that mediate tension transmission between the contractile apparatus and the extracellular matrix during smooth muscle contraction. tissue transfection; plasmids; cytoskeleton; talin; immunofluorescence  相似文献   

12.
Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a global health problem. HuH-7 hepatoma-derived cells are widely used as the only cell-based HCV replication system for HCV research, including drug assays. Recently, using different hepatoma Li23-derived cells, we developed an HCV drug assay system (ORL8), in which the genome-length HCV RNA (O strain of genotype 1b) encoding renilla luciferase replicates efficiently. In this study, using the HuH-7-derived OR6 assay system that we developed previously and the ORL8 assay system, we evaluated 26 anti-HCV reagents, which other groups had reported as anti-HCV candidates using HuH-7-derived assay systems other than OR6. The results revealed that more than half of the reagents showed different anti-HCV activities from those in the previous studies, and that anti-HCV activities evaluated by the OR6 and ORL8 assays were also frequently different. In further evaluation using the HuH-7-derived AH1R assay system, which was developed using the AH1 strain of genotype 1b, several reagents showed different anti-HCV activities in comparison with those evaluated by the OR6 and ORL8 assays. These results suggest that the different activities of anti-HCV reagents are caused by the differences in cell lines or HCV strains used for the development of assay systems. Therefore, we conclude that plural HCV assay systems developed using different cell lines or HCV strains are required for the objective evaluation of anti-HCV reagents.  相似文献   

13.
The generation of cortical actin filaments is necessary for processes such as cell motility and cell polarization. Several recent studies have demonstrated that Wiskott-Aldrich syndrome protein (WASP) family proteins and the actin-related protein (Arp) 2/3 complex are key factors in the nucleation of actin filaments in diverse eukaryotic organisms. To identify other factors involved in this process, we have isolated proteins that bind to Bee1p/Las17p, the yeast WASP-like protein, by affinity chromatography and mass spectroscopic analysis. The yeast type I myosins, Myo3p and Myo5p, have both been identified as Bee1p-interacting proteins. Like Bee1p, these myosins are essential for cortical actin assembly as assayed by in vitro reconstitution of actin nucleation sites in permeabilized yeast cells. Analysis using this assay further demonstrated that the motor activity of these myosins is required for the polymerization step, and that actin polymerization depends on phosphorylation of myosin motor domain by p21-activated kinases (PAKs), downstream effectors of the small guanosine triphosphatase, Cdc42p. The type I myosins also interact with the Arp2/3 complex through a sequence at the end of the tail domain homologous to the Arp2/3-activating region of WASP-like proteins. Combined deletions of the Arp2/3-interacting domains of Bee1p and the type I myosins abolish actin nucleation sites at the cortex, suggesting that these proteins function redundantly in the activation of the Arp2/3 complex.  相似文献   

14.
15.
Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.  相似文献   

16.
Apoptosis plays an important role in regulating development and homeostasis of the immune system, yet the elements of the signaling pathways that control cell death have not been well defined. When expressed in Jurkat T cells, an activated form of the small GTPase Cdc42 induces cell death exhibiting the characteristics of apoptosis. The death response induced by Cdc42 is mediated by activation of a protein kinase cascade leading to stimulation of c-Jun amino terminal kinase (JNK). Apoptosis initiated by Cdc42 is inhibited by dominant negative components of the JNK cascade and by reagents that block activity of the ICE protease (caspase) family, suggesting that stimulation of the JNK kinase cascade can lead to caspase activation. The sequence of morphological events observed typically in apoptotic cells is modified in the presence of activated Cdc42, suggesting that this GTPase may account for some aspects of cytoskeletal regulation during the apoptotic program. These data suggest a means through which the biochemical and morphological events occurring during apoptosis may be coordinately regulated.  相似文献   

17.
Although arsenic is a human carcinogen, the molecular mechanisms of its action remain to be understood. The present study reports that exposure to arsenic induced actin filament reorganization, resulting in lamellipodia and filopodia structures through the activation of Cdc42 in SVEC4-10 endothelial cells. It was also found that arsenic induced the formation of the superoxide anion (O2*) in SVEC4-10 cells. Immunoprecipitation and Western blotting analysis demonstrated that arsenic stimulation induced serine phosphorylation of p47phox, a key component of NADPH oxidase, indicating that arsenic induces O2* formation through NADPH oxidase activation. Inhibition of arsenic-induced actin filament reorganization by either overexpression of a dominant negative Cdc42 or pretreatment of an actin filament stabilizing regent, jasplakinolide, abrogated arsenic-induced NADPH oxidase activation, showing that the activation of NADPH oxidase was regulated by Cdc42-mediated actin filament reorganization. This study also showed that overexpression of a dominant negative Rac1 was sufficient to abolish arsenic-induced O2*- production, implying that Rac1 activities are required for Cdc42-mediated NADPH oxidase activation in response to arsenic stimulation. Furthermore, arsenic stimulation induced cell migration, which can be inhibited by the inactivation of either Cdc42 or NADPH oxidase. Taken together, the results indicate that arsenic is able to activate NADPH oxidase through Cdc42-mediated actin filament reorganization, leading to the induction of an increase in cell migration in SVEC4-10 endothelial cells.  相似文献   

18.
Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.  相似文献   

19.
Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号