首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Leishmania model to explain microbial virulence in chronic infectious diseases is proposed. All these diseases progress from infection to symptomatic phase to host death or recovery. The outcome of each phase is depicted to result from the interactions of a distinct group of parasite molecules with a specific host immune compartment. The first group consists of invasive/evasive determinants, which are largely parasite cell surface and secreted molecules. Their activities help parasites establish infection by overcoming host immunologic and non-immunologic barriers. These determinants do not cause disease per se, but are indispensable for infection necessary for the development of a disease-state. The second group of parasite molecules consists of "pathoantigenic" determinants – unique parasite epitopes present often within otherwise highly conserved cytoplasmic molecules. Immune response against these determinants is thought to result in immunopathology manifested as clinical signs or symptoms, namely the virulent phenotype. The third group of parasite molecules is hypothetically perceived as vaccine determinants. Their interactions with the host immune system lead to the elimination or reduction of parasites to effect a clinical cure. Differential expression of these determinants alone by parasites may alter their interactions with the hosts. Virulent phenotype is consequently presented as a spectrum of manifestations from asymptomatic infection to fatality. A secondary level of regulation lies in host genetic and environmental factors. The model suggests that different parasite determinants may be targeted by different strategies to achieve more effective control of leishmaniasis and other similar diseases.  相似文献   

2.
Understanding how parasites are transmitted to new species is of great importance for human health, agriculture and conservation. However, it is still unclear why some parasites are shared by many species, while others have only one host. Using a new measure of ‘phylogenetic host specificity’, we find that most primate parasites with more than one host are phylogenetic generalists, infecting less closely related primates than expected. Evolutionary models suggest that phylogenetic host generalism is driven by a mixture of host–parasite cospeciation and lower rates of parasite extinction. We also show that phylogenetic relatedness is important in most analyses, but fails to fully explain patterns of parasite sharing among primates. Host ecology and geographical distribution emerged as key additional factors that influence contacts among hosts to facilitate sharing. Greater understanding of these factors is therefore crucial to improve our ability to predict future infectious disease risks.  相似文献   

3.
Immune cell functions, lipids and host natural resistance   总被引:2,自引:0,他引:2  
Nutritional status may exert a profound effect on immune system functions. Hence, several parameters of immune system are modified by dietary lipid administration, as lymphocyte proliferation, cytokine production, natural killer activity, antigen presentation, etc. Thus, numerous studies have indicated the key role of lipids as immune response modulators. These properties have been applied in the treatment of autoimmune and inflammatory diseases. As a result, the reduction or suppression of immune status due to lipid incorporation promotes an impairment in the ability of host natural response to eliminate infectious microorganisms as bacteria or parasites. In the present review, we analyze the current status about the relationship among dietary lipids, reduction of immune parameters and reduction of host natural response against infectious diseases. Many discrepancies are discussed, although several studies indicate a close association between dietary lipid manipulation and impairment in the elimination of bacteria, viruses or parasites. On the other hand, other studies point out a beneficial effect of dietary lipid manipulation on the host natural response. Future investigations will determine the events involved in the regulation of immune response by fatty acids and their role in the elimination of pathogenic agents.  相似文献   

4.
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.  相似文献   

5.
Dispersal increases local transmission of avian malarial parasites   总被引:2,自引:0,他引:2  
The relationships between dispersal and local transmission rate of parasites are essential to understanding host–parasite coevolution and the emergence and spread of novel disease threats. Here we show that year‐round transmission, as opposed to summer transmission, has repeatedly evolved in malarial parasites (genera Plasmodium and Haemoproteus) of a migratory bird. Year‐round transmission allows parasites to spread in sympatric host's wintering areas, and hence to colonize distantly located host's breeding areas connected by host‐migration movements. Widespread parasites had higher local prevalence, revealing increased transmission, than geographically restricted parasites. Our results show a positive relationship between dispersal and local transmission of malarial parasites that is apparently mediated by frequent evolutionary changes in parasite transmission dynamics, which has important implications for the ecology and evolution of infectious diseases.  相似文献   

6.
Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.  相似文献   

7.
Using the ecological and natural-science approaches, the authors have come to the conclusion that microorganisms, pathogenic for humans (animals), are their parasites for whom the disease of their biological host is the necessary condition of their existence as a biological species. And accordingly, microorganisms, opportunistic in humans (animals) are their parasites and commensals, as well as saprophytes, for whom the disease of their host is not the necessary condition of their existence in nature. The biological host is a symbion necessary for the existence of pathogenic and most opportunistic microorganisms, but for a pathogenic microorganism the disease of the host is the result of symbiotic relationships, while for an opportunistic microorganism the disease of the host is the consequence of disturbances in symbiotic relationships. Such view of pathogenicity is important for creating a scientifically grounded theory of the liquidation of human infectious diseases.  相似文献   

8.
Host shifts can cause novel infectious diseases, and is a key process in diversification. Disentangling the effects of host shift vs. those of cospeciation is non‐trivial as both can result in phylogenic congruence. We develop a new framework based on network analysis and Approximate Bayesian Computation to quantify host shift and cospeciation rates in host‐parasite systems. Our method enables estimation of the expected time to the next host shift or cospeciation event. We then apply it to avian haemosporidian parasite systems and to the pocket gophers‐chewing lice system, and demonstrate that both host shift and cospeciation can be reliably estimated by our method. We confirm that host shifts have shaped the evolutionary history of avian haemosporidian parasites and have played a minor role in the gopher–chewing lice system. Our method is promising for predicting the rate of potential host shifts and thus the emergence of novel infectious diseases.  相似文献   

9.
The development of shellfish-based industries and the concomitant increase in demand for the introduction and transfer of different shellfish species and stocks has increased the risks of spreading their parasites and diseases around the world. To avoid the accidental introduction of infectious disease agents, information on known parasites and diseases must be readily available. Since the number of recognized infectious agents and facts on known diseases is continuously increasing, it is necessary to update the current state of knowledge. Thus, published and new accounts of viruses, bacteria, protozoa, fungi, metazoa, and infectious diseases of unknown aetiology in commercially exploited shellfish (molluscs, echinoderms, and crustaceans) are summarised. The summaries were devised to be of use to regulatory agencies, diagnosticians, researchers, and students who may require information on this diverse subject. The information is organised according to the host that is normally infected (i.e. oysters, mussels, clams, cockles, scallops, abalone, sea urchins, sea stars, lobsters, shrimp, prawns, crabs, and freshwater crayfish). Each of the 169 summaries includes the common or widely accepted name of the parasite or disease agent, and the scientific name (where known) or taxonomic affiliation. In addition, geographic distribution, host species infected (both naturally and experimentally), impact on host health, diagnostic techniques including illustrations for many of the diseases, known methods of control, and appropriate references are provided.  相似文献   

10.
Some host individuals tend to acquire parasites at a much faster rate than do others--a consequence of heterogeneities in susceptibility and/or exposure. This is termed 'overdispersion' and, as for many other statistical phenomena, the degree of overdispersion often conforms to a 20/80 rule, where 20% of the host population is responsible for approximately 80% of the parasite transmission. But which are the hosts driving so much of the dynamics of an infectious disease? If host individuals at the tail of the frequency distribution can be identified by some common label, controlling parasitic diseases would be much easier. In two recent papers, Perkins et al. and Ferrari et al. have shown that male hosts are much more important than female hosts in the transmission of parasites.  相似文献   

11.
The disease caused by parasites and pathogens often causes sublethal effects that reduce host fecundity. Theory suggests that if parasites can "target" the detrimental effects of their growth on either host mortality or fecundity, they should always fully sterilize. This is because a reduction in host fecundity does not reduce the infectious period and is therefore neutral to a horizontally transmitted infectious organism. However, in nature fully castrating parasites are relatively rare, no doubt in part because of defense mechanisms in the host. Here, we examine in detail the evolution of host defense to the sterilizing effects of parasites and show that intermediate levels of sterility tolerance are found to evolve for a wide range of cost structures. Our key result arises when the host and parasite coevolve. Investment in tolerance by the host may prevent castration, but if host defense is through resistance (by controlling the parasite's growth rate) coevolution by the parasite results in the complete loss of infected host fecundity. Resistance is therefore a waste of resources, but tolerance can explain why parasites do not castrate their hosts. Our results further emphasize the importance of tolerance as opposed to resistance to parasites.  相似文献   

12.
Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage Φ2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host–parasite combinations with similar underlying infection genetics, as well as the development of phage therapy.  相似文献   

13.
14.
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.  相似文献   

15.
The importance of infectious disease in the survival and adaptation of animal populations is rapidly becoming apparent. Throughout evolution, animal species have been continually afflicted with devastating disease outbreaks which have influenced the demographic and genetic status of the populations. Some general population consequences of such epidemics include selection for disease resistance, the occasional alteration of host gene frequencies by a genetic 'founder effect' after an outbreak, and genetic adaptation of parasites to abrogate host defense mechanisms. A wide variety of host cellular genes which are polymorphic within species and which confer a regulatory effect on the outcome of infectious diseases has recently been discovered. The critical importance of maintaining genetic diversity with respect to disease defense genes in natural populations is indicated by certain populations which have reduced genetic variability and apparent increased vulnerability to infectious disease.  相似文献   

16.
Progress in genomics and the associated technological, statistical and bioinformatics advances have facilitated the successful implementation of genome-wide association studies (GWAS) towards understanding the genetic basis of common diseases. Infectious diseases contribute significantly to the global burden of disease and there is robust epidemiological evidence that host genetic factors are important determinants of the outcome of interactions between host and pathogen. Indeed, infectious diseases have exerted profound selective pressure on human evolution. However, the application of GWAS to infectious diseases has been relatively limited compared with non-communicable diseases. Here we review GWAS findings for important infectious diseases, including malaria, tuberculosis and HIV. We highlight some of the pitfalls recognized more generally for GWAS, as well as issues specific to infection, including the role of the pathogen which also has a genome. We also discuss the challenges encountered when studying African populations which are genetically more ancient and more diverse that other populations and disproportionately bear the main global burden of serious infectious diseases.  相似文献   

17.
The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.  相似文献   

18.
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

19.
Larson RL 《Theriogenology》2008,70(3):565-568
It is important for food animal veterinarians to understand the interaction among animals, pathogens, and the environment, in order to implement herd-specific biosecurity plans. Animal factors such as the number of immunologically protected individuals influence the number of individuals that a potential pathogen is able to infect, as well as the speed of spread through a population. Pathogens differ in their virulence and contagiousness. In addition, pathogens have various methods of transmission that impact how they interact with a host population. A cattle population's environment includes its housing type, animal density, air quality, and exposure to mud or dust and other health antagonists such as parasites and stress; these environmental factors influence the innate immunity of a herd by their impact on immunosuppression. In addition, a herd's environment also dictates the "animal flow" or contact and mixing patterns of potentially infectious and susceptible animals. Biosecurity is the attempt to keep infectious agents away from a herd, state, or country, and to control the spread of infectious agents within a herd. Infectious agents (bacteria, viruses, or parasites) alone are seldom able to cause disease in cattle without contributing factors from other infectious agents and/or the cattle's environment. Therefore to develop biosecurity plans for infectious disease in cattle, veterinarians must consider the pathogen, as well as environmental and animal factors.  相似文献   

20.
《Trends in parasitology》2023,39(7):588-602
The mass production of insects is rapidly expanding globally, supporting multiple industrial needs. However, parasite infections in insect mass-production systems can lower productivity and can lead to devastating losses. High rearing densities and artificial environmental conditions in mass-rearing facilities affect the insect hosts as well as their parasites. Environmental conditions such as temperature, gases, light, vibration, and ionizing radiation can affect productivity in insect mass-production facilities by altering insect development and susceptibility to parasites. This review explores the recent literature on environment–host–parasite interactions with a specific focus on mass-reared insect species. Understanding these complex interactions offers opportunities to optimise environmental conditions for the prevention of infectious diseases in mass-reared insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号